Hoberg N, Harms K, Surup F, Ruhl M
ACS Chem Biol. 2024; 19(10):2144-2151.
PMID: 39293797
PMC: 11495317.
DOI: 10.1021/acschembio.4c00178.
Kakizaki T, Abe H, Kotouge Y, Matsubuchi M, Sugou M, Honma C
Sci Rep. 2023; 13(1):10132.
PMID: 37349479
PMC: 10287680.
DOI: 10.1038/s41598-023-37115-y.
Lavrijssen B, Baars J, Lugones L, Scholtmeijer K, Sedaghat Telgerd N, Sonnenberg A
PLoS One. 2020; 15(11):e0241749.
PMID: 33147286
PMC: 7641404.
DOI: 10.1371/journal.pone.0241749.
Liu X, Xia E, Li M, Cui Y, Wang P, Zhang J
PLoS One. 2020; 15(10):e0239890.
PMID: 33064719
PMC: 7567395.
DOI: 10.1371/journal.pone.0239890.
Honda Y, Tanigawa E, Tsukihara T, Nguyen D, Kawabe H, Sakatoku N
AMB Express. 2019; 9(1):92.
PMID: 31236750
PMC: 6591348.
DOI: 10.1186/s13568-019-0818-1.
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom .
Zhou J, Kang L, Liu C, Niu X, Wang X, Liu H
Appl Environ Microbiol. 2019; 85(15).
PMID: 31126941
PMC: 6643254.
DOI: 10.1128/AEM.00532-19.
Efficient CRISPR-Cas9 Gene Disruption System in Edible-Medicinal Mushroom .
Chen B, Wei T, Ye Z, Yun F, Kang L, Tang H
Front Microbiol. 2018; 9:1157.
PMID: 29946301
PMC: 6005869.
DOI: 10.3389/fmicb.2018.01157.
Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system.
Sugano S, Suzuki H, Shimokita E, Chiba H, Noji S, Osakabe Y
Sci Rep. 2017; 7(1):1260.
PMID: 28455526
PMC: 5430836.
DOI: 10.1038/s41598-017-00883-5.
The good, the bad and the tasty: The many roles of mushrooms.
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G
Stud Mycol. 2017; 85:125-157.
PMID: 28082758
PMC: 5220184.
DOI: 10.1016/j.simyco.2016.11.002.
The Coprinopsis cinerea Tup1 homologue Cag1 is required for gill formation during fruiting body morphogenesis.
Masuda R, Iguchi N, Tukuta K, Nagoshi T, Kemuriyama K, Muraguchi H
Biol Open. 2016; 5(12):1844-1852.
PMID: 27815245
PMC: 5200907.
DOI: 10.1242/bio.021246.
A mutation in the Cc.arp9 gene encoding a putative actin-related protein causes defects in fruiting initiation and asexual development in the agaricomycete Coprinopsis cinerea.
Nakazawa T, Ando Y, Hata T, Nakahori K
Curr Genet. 2016; 62(3):565-74.
PMID: 26746642
DOI: 10.1007/s00294-015-0560-4.
Current technologies and related issues for mushroom transformation.
Kim S, Ha B, Ro H
Mycobiology. 2015; 43(1):1-8.
PMID: 25892908
PMC: 4397374.
DOI: 10.5941/MYCO.2015.43.1.1.
Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation.
Lin X, Chacko N, Wang L, Pavuluri Y
Med Mycol. 2014; 53(3):225-34.
PMID: 25541555
PMC: 4574871.
DOI: 10.1093/mmy/myu083.
Production of antibacterial peptide from bee venom via a new strategy for heterologous expression.
Hou C, Guo L, Lin J, You L, Wu W
Mol Biol Rep. 2014; 41(12):8081-91.
PMID: 25189650
DOI: 10.1007/s11033-014-3706-4.
Heterologous transformation of Agrocybe aegerita with a bacterial neomycin-resistance gene fused to a fungal promoter-like DNA sequence.
Noel T, Simoneau P, Labarere J
Theor Appl Genet. 2013; 90(7-8):1019-27.
PMID: 24173057
DOI: 10.1007/BF00222916.
A mutation in the FHA domain of Coprinus cinereus Nbs1 Leads to Spo11-independent meiotic recombination and chromosome segregation.
Crown K, Savytskyy O, Malik S, Logsdon J, Williams R, Tainer J
G3 (Bethesda). 2013; 3(11):1927-43.
PMID: 24062528
PMC: 3815056.
DOI: 10.1534/g3.113.007906.
An MSH4 homolog, stpp1, from Pleurotus pulmonarius is a "silver bullet" for resolving problems caused by spores in cultivated mushrooms.
Okuda Y, Murakami S, Honda Y, Matsumoto T
Appl Environ Microbiol. 2013; 79(15):4520-7.
PMID: 23666334
PMC: 3719512.
DOI: 10.1128/AEM.00561-13.
Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus).
Stajich J, Wilke S, Ahren D, Au C, Birren B, Borodovsky M
Proc Natl Acad Sci U S A. 2010; 107(26):11889-94.
PMID: 20547848
PMC: 2900686.
DOI: 10.1073/pnas.1003391107.
Mutations in the Cc.rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea.
Nakazawa T, Tatsuta Y, Fujita T, Nakahori K, Kamada T
Curr Genet. 2010; 56(4):361-7.
PMID: 20495806
DOI: 10.1007/s00294-010-0307-1.
Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors.
Kilaru S, Collins C, Hartley A, Burns C, Foster G, Bailey A
Curr Genet. 2009; 55(5):543-50.
PMID: 19636558
DOI: 10.1007/s00294-009-0266-6.