» Articles » PMID: 35953642

Filling of a Water-free Void Explains the Allosteric Regulation of the β-adrenergic Receptor by Cholesterol

Overview
Journal Nat Chem
Specialty Chemistry
Date 2022 Aug 11
PMID 35953642
Authors
Affiliations
Soon will be listed here.
Abstract

Recent high-pressure NMR results indicate that the preactive conformation of the β-adrenergic receptor (βAR) harbours completely empty cavities of ~100 Å volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized βAR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized βAR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for βAR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of βAR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.

Citing Articles

Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery.

Conflitti P, Lyman E, Sansom M, Hildebrand P, Gutierrez-de-Teran H, Carloni P Nat Rev Drug Discov. 2025; .

PMID: 39747671 DOI: 10.1038/s41573-024-01083-3.


Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins.

Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V Front Mol Biosci. 2024; 11:1503709.

PMID: 39606035 PMC: 11599742. DOI: 10.3389/fmolb.2024.1503709.


Hidden water's influence on rhodopsin activation.

Bachler Z, Brown M Biophys J. 2024; 123(24):4167-4179.

PMID: 39550612 PMC: 11700366. DOI: 10.1016/j.bpj.2024.11.012.


NMR spectroscopy reveals insights into mechanisms of GPCR signaling.

Silva L, Wijesekara A, Eddy M Trends Biochem Sci. 2024; 50(1):84-85.

PMID: 39523165 PMC: 11698642. DOI: 10.1016/j.tibs.2024.10.007.


Exploration of Cryptic Pockets Using Enhanced Sampling Along Normal Modes: A Case Study of KRAS .

Vithani N, Zhang S, Thompson J, Patel L, Demidov A, Xia J J Chem Inf Model. 2024; 64(21):8258-8273.

PMID: 39419500 PMC: 11558672. DOI: 10.1021/acs.jcim.4c01435.


References
1.
Williams M, Goodfellow J, Thornton J . Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994; 3(8):1224-35. PMC: 2142929. DOI: 10.1002/pro.5560030808. View

2.
Otting G, Liepinsh E, Wuthrich K . Protein hydration in aqueous solution. Science. 1991; 254(5034):974-80. DOI: 10.1126/science.1948083. View

3.
Desvaux H, Dubois L, Huber G, Quillin M, Berthault P, Matthews B . Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy. J Am Chem Soc. 2005; 127(33):11676-83. DOI: 10.1021/ja053074p. View

4.
Krimmer S, Cramer J, Schiebel J, Heine A, Klebe G . How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S' Pocket of Thermolysin. J Am Chem Soc. 2017; 139(30):10419-10431. DOI: 10.1021/jacs.7b05028. View

5.
Qvist J, Davidovic M, Hamelberg D, Halle B . A dry ligand-binding cavity in a solvated protein. Proc Natl Acad Sci U S A. 2008; 105(17):6296-301. PMC: 2359778. DOI: 10.1073/pnas.0709844105. View