» Articles » PMID: 35948767

Gene Regulation on Extrachromosomal DNA

Overview
Date 2022 Aug 10
PMID 35948767
Authors
Affiliations
Soon will be listed here.
Abstract

Oncogene amplification on extrachromosomal DNA (ecDNA) is prevalent in human cancer and is associated with poor outcomes. Clonal, megabase-sized circular ecDNAs in cancer are distinct from nonclonal, small sub-kilobase-sized DNAs that may arise during normal tissue homeostasis. ecDNAs enable profound changes in gene regulation beyond copy-number gains. An emerging principle of ecDNA regulation is the formation of ecDNA hubs: micrometer-sized nuclear structures of numerous copies of ecDNAs tethered by proteins in spatial proximity. ecDNA hubs enable cooperative and intermolecular sharing of DNA regulatory elements for potent and combinatorial gene activation. The 3D context of ecDNA shapes its gene expression potential, selection for clonal heterogeneity among ecDNAs, distribution through cell division, and reintegration into chromosomes. Technologies for studying gene regulation and structure of ecDNA are starting to answer long-held questions on the distinct rules that govern cancer genes beyond chromosomes.

Citing Articles

Extrachromosomal circular DNA: a double-edged sword in cancer progression and age-related diseases.

Irdianto S, Dwiranti A, Bowolaksono A Hum Cell. 2025; 38(2):58.

PMID: 39969664 DOI: 10.1007/s13577-025-01178-y.


Enhancing transcription-replication conflict targets ecDNA-positive cancers.

Tang J, Weiser N, Wang G, Chowdhry S, Curtis E, Zhao Y Nature. 2024; 635(8037):210-218.

PMID: 39506153 PMC: 11540844. DOI: 10.1038/s41586-024-07802-5.


The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma.

Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S Front Microbiol. 2024; 15:1469016.

PMID: 39309526 PMC: 11412822. DOI: 10.3389/fmicb.2024.1469016.


Bioinformatics advances in eccDNA identification and analysis.

Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y Oncogene. 2024; 43(41):3021-3036.

PMID: 39209966 DOI: 10.1038/s41388-024-03138-6.


3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression.

Mortenson K, Dawes C, Wilson E, Patchen N, Johnson H, Gertz J Nat Commun. 2024; 15(1):6130.

PMID: 39033128 PMC: 11271278. DOI: 10.1038/s41467-024-50387-w.


References
1.
Xu K, Ding L, Chang T, Shao Y, Chiang J, Mulder H . Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathol. 2018; 137(1):123-137. PMC: 6338707. DOI: 10.1007/s00401-018-1912-1. View

2.
Stahl F, Wettergren Y, Levan G . Amplicon structure in multidrug-resistant murine cells: a nonrearranged region of genomic DNA corresponding to large circular DNA. Mol Cell Biol. 1992; 12(3):1179-87. PMC: 369548. DOI: 10.1128/mcb.12.3.1179-1187.1992. View

3.
Wang Y, Wang M, Djekidel M, Chen H, Liu D, Alt F . eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature. 2021; 599(7884):308-314. PMC: 9295135. DOI: 10.1038/s41586-021-04009-w. View

4.
Oobatake Y, Shimizu N . Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer. 2019; 59(3):133-143. DOI: 10.1002/gcc.22810. View

5.
Shoshani O, Brunner S, Yaeger R, Ly P, Nechemia-Arbely Y, Kim D . Chromothripsis drives the evolution of gene amplification in cancer. Nature. 2020; 591(7848):137-141. PMC: 7933129. DOI: 10.1038/s41586-020-03064-z. View