» Articles » PMID: 35946162

Vexitoxins: Conotoxin-like Venom Peptides from Predatory Gastropods of the Genus

Overview
Journal Proc Biol Sci
Specialty Biology
Date 2022 Aug 10
PMID 35946162
Authors
Affiliations
Soon will be listed here.
Abstract

Venoms of predatory marine cone snails are intensely studied because of the biomedical applications of the neuropeptides that they contain, termed conotoxins. Meanwhile some gastropod lineages have independently acquired secretory glands strikingly similar to the venom gland of cone snails, suggesting that they possess similar venoms. Here we focus on the most diversified of these clades, the genus . Based on the analysis of a multi-species proteo-transcriptomic dataset, we show that species indeed produce complex venoms dominated by highly diversified short cysteine-rich peptides, vexitoxins. Vexitoxins possess the same precursor organization, display overlapping cysteine frameworks and share several common post-translational modifications with conotoxins. Some vexitoxins show sequence similarity to conotoxins and adopt similar domain conformations, including a pharmacologically relevant inhibitory cysteine knot motif. The envenomation gland (gL) is a notably more recent evolutionary novelty than the conoidean venom gland. Thus, we hypothesize lower divergence between vexitoxin genes, and their ancestral 'somatic' counterparts compared to that in conotoxins, and we find support for this hypothesis in the evolution of the vexitoxin cluster V027. We use this example to discuss how future studies on vexitoxins can inform the origin of conotoxins, and how they may help to address outstanding questions in venom evolution.

Citing Articles

Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush.

Fedosov A, Zaharias P, Lemarcis T, Modica M, Holford M, Oliverio M Syst Biol. 2024; 73(3):521-531.

PMID: 38456663 PMC: 11377187. DOI: 10.1093/sysbio/syae010.


Collaborative Expression: Transcriptomics of Conus virgo Suggests Contribution of Multiple Secretory Glands to Venom Production.

Fedosov A, Tucci C, Kantor Y, Farhat S, Puillandre N J Mol Evol. 2023; 91(6):837-853.

PMID: 37962577 PMC: 10730640. DOI: 10.1007/s00239-023-10139-8.


Whole Genome Duplication and Gene Evolution in the Hyperdiverse Venomous Gastropods.

Farhat S, Modica M, Puillandre N Mol Biol Evol. 2023; 40(8).

PMID: 37494290 PMC: 10401626. DOI: 10.1093/molbev/msad171.


Neogastropod (Mollusca, Gastropoda) phylogeny: A step forward with mitogenomes.

Lemarcis T, Fedosov A, Kantor Y, Abdelkrim J, Zaharias P, Puillandre N Zool Scr. 2022; 51(5):550-561.

PMID: 36245672 PMC: 9544082. DOI: 10.1111/zsc.12552.


Vexitoxins: conotoxin-like venom peptides from predatory gastropods of the genus .

Kuznetsova K, Zvonareva S, Ziganshin R, Mekhova E, Dgebuadze P, Yen D Proc Biol Sci. 2022; 289(1980):20221152.

PMID: 35946162 PMC: 9363990. DOI: 10.1098/rspb.2022.1152.

References
1.
Levitsky L, Ivanov M, Lobas A, Bubis J, Tarasova I, Solovyeva E . IdentiPy: An Extensible Search Engine for Protein Identification in Shotgun Proteomics. J Proteome Res. 2018; 17(7):2249-2255. DOI: 10.1021/acs.jproteome.7b00640. View

2.
Biggs J, Olivera B, Kantor Y . Alpha-conopeptides specifically expressed in the salivary gland of Conus pulicarius. Toxicon. 2008; 52(1):101-5. PMC: 2543058. DOI: 10.1016/j.toxicon.2008.05.004. View

3.
Chandonia J, Fox N, Brenner S . SCOPe: classification of large macromolecular structures in the structural classification of proteins-extended database. Nucleic Acids Res. 2018; 47(D1):D475-D481. PMC: 6323910. DOI: 10.1093/nar/gky1134. View

4.
Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I . Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7):644-52. PMC: 3571712. DOI: 10.1038/nbt.1883. View

5.
Ayoub R, Lee Y . RUPEE: A fast and accurate purely geometric protein structure search. PLoS One. 2019; 14(3):e0213712. PMC: 6420038. DOI: 10.1371/journal.pone.0213712. View