Wheat Biofortification: Utilizing Natural Genetic Diversity, Genome-Wide Association Mapping, Genomic Selection, and Genome Editing Technologies
Overview
Authors
Affiliations
Alleviating micronutrients associated problems in children below five years and women of childbearing age, remains a significant challenge, especially in resource-poor nations. One of the most important staple food crops, wheat attracts the highest global research priority for micronutrient (Fe, Zn, Se, and Ca) biofortification. Wild relatives and cultivated species of wheat possess significant natural genetic variability for these micronutrients, which has successfully been utilized for breeding micronutrient dense wheat varieties. This has enabled the release of 40 biofortified wheat cultivars for commercial cultivation in different countries, including India, Bangladesh, Pakistan, Bolivia, Mexico and Nepal. In this review, we have systematically analyzed the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micronutrients, and the status of micronutrient biofortified wheat varieties released for commercial cultivation across the globe. In addition, we have also discussed the potential implications of emerging technologies such as genome editing to improve the micronutrient content and their bioavailability in wheat.
Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism.
Nasim A, Hao J, Tawab F, Jin C, Zhu J, Luo S Int J Mol Sci. 2025; 26(5).
PMID: 40076800 PMC: 11900071. DOI: 10.3390/ijms26052178.
The current status of genetic biofortification in alleviating malnutrition in Africa.
Mmbando G, Missanga J J Genet Eng Biotechnol. 2024; 22(4):100445.
PMID: 39674627 PMC: 11638581. DOI: 10.1016/j.jgeb.2024.100445.
Past innovations and future possibilities in plant chromosome engineering.
Liu Y, Liu Q, Yi C, Liu C, Shi Q, Wang M Plant Biotechnol J. 2024; 23(3):695-708.
PMID: 39612312 PMC: 11869185. DOI: 10.1111/pbi.14530.
Ji Y, Hewavithana T, Sharpe A, Jin L Front Plant Sci. 2024; 15:1393140.
PMID: 39100085 PMC: 11295249. DOI: 10.3389/fpls.2024.1393140.
Biofortification of Triticum species: a stepping stone to combat malnutrition.
Kumar J, Saini D, Kumar A, Kumari S, Gahlaut V, Rahim M BMC Plant Biol. 2024; 24(1):668.
PMID: 39004715 PMC: 11247745. DOI: 10.1186/s12870-024-05161-x.