Impairment of RAD17 Functions by MiR-506-3p As a Novel Synthetic Lethal Approach Targeting DNA Repair Pathways in Ovarian Cancer
Overview
Authors
Affiliations
Epithelial ovarian cancer (EOC) remains the most lethal gynecological cancer and development of chemo-resistance is a major factor in disease relapse. Homologous recombination (HR) is a critical pathway for DNA double strand break repair and its deficiency is associated to a better response to DNA damage-inducing agents. Strategies to inhibit HR-mediated DNA repair is a clinical need to improve patients' outcome. MicroRNA (miRNAs) affect most of cellular processes including response to cancer treatment. We previously showed that miR-506-3p targets , an essential HR component. In this study we demonstrated that: i) another HR component, , is also a direct target of miR-506-3p and that it is involved in mediating miR-506-3p phenotypic effects; ii) the impairment of miR-506-3p binding to 3' UTR reverted the miR-506-3p induced platinum sensitization; iii) miR-506-3p/RAD17 axis reduces the ability of EOC cell to sense DNA damage, abrogates the G2/M cell cycle checkpoint thus delaying the G2/M cell cycle arrest likely allowing the entry into mitosis of heavily DNA-damaged cells with a consequent mitotic catastrophe; iv) RAD17 expression, regulated by miR-506-3p, is synthetically lethal with inhibitors of cell cycle checkpoint kinases Chk1 and Wee1 in platinum resistant cell line. Overall miR-506-3p expression may recapitulate a BRCAness phenotype sensitizing EOC cells to chemotherapy and helping in selecting patients susceptible to DNA damaging drugs in combination with new small molecules targeting DNA-damage repair pathway.
Pellegrino B, Capoluongo E, Bagnoli M, Arenare L, Califano D, Scambia G ESMO Open. 2025; 10(1):104091.
PMID: 39754985 PMC: 11758122. DOI: 10.1016/j.esmoop.2024.104091.
Joris S, Giron P, Olsen C, Seneca S, Gheldof A, Staessens S BMC Cancer. 2024; 24(1):723.
PMID: 38872153 PMC: 11170902. DOI: 10.1186/s12885-024-12442-z.
Alam S, Giri P Cancer Drug Resist. 2024; 7:6.
PMID: 38434767 PMC: 10905178. DOI: 10.20517/cdr.2023.152.