» Articles » PMID: 35918061

Protein Condensate Formation Via Controlled Multimerization of Intrinsically Disordered Sequences

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2022 Aug 2
PMID 35918061
Authors
Affiliations
Soon will be listed here.
Abstract

Many proteins harboring low complexity or intrinsically disordered sequences (IDRs) are capable of undergoing liquid-liquid phase separation to form mesoscale condensates that function as biochemical niches with the ability to concentrate or sequester macromolecules and regulate cellular activity. Engineered disordered proteins have been used to generate programmable synthetic membraneless organelles in cells. Phase separation is governed by the strength of interactions among polypeptides with multivalency enhancing phase separation at lower concentrations. Previously, we and others demonstrated enzymatic control of IDR valency from multivalent precursors to dissolve condensed phases. Here, we develop noncovalent strategies to multimerize an individual IDR, the RGG domain of LAF-1, using protein interaction domains to regulate condensate formation in vitro and in living cells. First, we characterize modular dimerization of RGG domains at either terminus using cognate high-affinity coiled-coil pairs to form stable condensates in vitro. Second, we demonstrate temporal control over phase separation of RGG domains fused to FRB and FKBP in the presence of dimerizer. Further, using a photocaged dimerizer, we achieve optically induced condensation both in cell-sized emulsions and within live cells. Collectively, these modular tools allow multiple strategies to promote phase separation of a common core IDR for tunable control of condensate assembly.

Citing Articles

Interfacing bacterial microcompartment shell proteins with genetically encoded condensates.

Costantino M, Young E, Banerjee A, Kerfeld C, Ghirlanda G Protein Sci. 2025; 34(3):e70061.

PMID: 39969154 PMC: 11837282. DOI: 10.1002/pro.70061.


Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.

van Veldhuisen T, Dijkstra R, Koops A, Cossar P, van Hest J, Brunsveld L J Am Chem Soc. 2025; 147(6):5386-5397.

PMID: 39874979 PMC: 11826995. DOI: 10.1021/jacs.4c17567.


Programmability and biomedical utility of intrinsically-disordered protein polymers.

Giraldo-Castano M, Littlejohn K, Avecilla A, Barrera-Villamizar N, Quiroz F Adv Drug Deliv Rev. 2024; 212:115418.

PMID: 39094909 PMC: 11389844. DOI: 10.1016/j.addr.2024.115418.


Competitive protein recruitment in artificial cells.

van Veldhuisen T, Verwiel M, Novosedlik S, Brunsveld L, van Hest J Commun Chem. 2024; 7(1):148.

PMID: 38942913 PMC: 11213860. DOI: 10.1038/s42004-024-01229-9.


A Minispidroin Guides the Molecular Design for Cellular Condensation Mechanisms in .

Feng J, Gabryelczyk B, Tunn I, Osmekhina E, Linder M ACS Synth Biol. 2023; 12(10):3050-3063.

PMID: 37688556 PMC: 10594646. DOI: 10.1021/acssynbio.3c00374.


References
1.
Phair R, Misteli T . High mobility of proteins in the mammalian cell nucleus. Nature. 2000; 404(6778):604-9. DOI: 10.1038/35007077. View

2.
Zumbro E, Alexander-Katz A . Multivalent polymers can control phase boundary, dynamics, and organization of liquid-liquid phase separation. PLoS One. 2021; 16(11):e0245405. PMC: 8575181. DOI: 10.1371/journal.pone.0245405. View

3.
Haruki H, Nishikawa J, Laemmli U . The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol Cell. 2008; 31(6):925-32. DOI: 10.1016/j.molcel.2008.07.020. View

4.
Alberti S, Gladfelter A, Mittag T . Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell. 2019; 176(3):419-434. PMC: 6445271. DOI: 10.1016/j.cell.2018.12.035. View

5.
Shrinivas K, Sabari B, Coffey E, Klein I, Boija A, Zamudio A . Enhancer Features that Drive Formation of Transcriptional Condensates. Mol Cell. 2019; 75(3):549-561.e7. PMC: 6690378. DOI: 10.1016/j.molcel.2019.07.009. View