» Articles » PMID: 35905739

Aggregation of Cryopreserved Mid-hindgut Endoderm for More Reliable and Reproducible HPSC-derived Small Intestinal Organoid Generation

Abstract

A major technical limitation hindering the widespread adoption of human pluripotent stem cell (hPSC)-derived gastrointestinal (GI) organoid technologies is the need for de novo hPSC differentiation and dependence on spontaneous morphogenesis to produce detached spheroids. Here, we report a method for simple, reproducible, and scalable production of small intestinal organoids (HIOs) based on the aggregation of cryopreservable hPSC-derived mid-hindgut endoderm (MHE) monolayers. MHE aggregation eliminates variability in spontaneous spheroid production and generates HIOs that are comparable to those arising spontaneously. With a minor modification to the protocol, MHE can be cryopreserved, thawed, and aggregated, facilitating HIO production without de novo hPSC differentiation. Finally, aggregation can also be used to generate antral stomach organoids and colonic organoids. This improved method removes significant barriers to the implementation and successful use of hPSC-derived GI organoid technologies and provides a framework for improved dissemination and increased scalability of GI organoid production.

Citing Articles

Deriving Human Intestinal Organoids with Functional Tissue-Resident Macrophages All From Pluripotent Stem Cells.

Tominaga K, Kechele D, Sanchez J, Vales S, Jurickova I, Roman L Cell Mol Gastroenterol Hepatol. 2024; 19(4):101444.

PMID: 39701210 PMC: 11847122. DOI: 10.1016/j.jcmgh.2024.101444.


Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells.

Takahashi J, Sugihara H, Kato S, Kawasaki S, Nagata S, Okamoto R Cell Rep Methods. 2024; 4(12):100930.

PMID: 39662475 PMC: 11704612. DOI: 10.1016/j.crmeth.2024.100930.


SMPD4-mediated sphingolipid metabolism regulates brain and primary cilia development.

Inskeep K, Crase B, Dayarathna T, Stottmann R Development. 2024; 151(22).

PMID: 39470011 PMC: 11586524. DOI: 10.1242/dev.202645.


Host-microbiota interaction in intestinal stem cell homeostasis.

Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W Gut Microbes. 2024; 16(1):2353399.

PMID: 38757687 PMC: 11110705. DOI: 10.1080/19490976.2024.2353399.


Scalable production of homogeneous cardiac organoids derived from human pluripotent stem cells.

Moriwaki T, Tani H, Haga K, Morita-Umei Y, Soma Y, Umei T Cell Rep Methods. 2023; 3(12):100666.

PMID: 38113855 PMC: 10753388. DOI: 10.1016/j.crmeth.2023.100666.


References
1.
Forbester J, Goulding D, Vallier L, Hannan N, Hale C, Pickard D . Interaction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells. Infect Immun. 2015; 83(7):2926-34. PMC: 4468523. DOI: 10.1128/IAI.00161-15. View

2.
Ortmann D, Vallier L . Variability of human pluripotent stem cell lines. Curr Opin Genet Dev. 2017; 46:179-185. DOI: 10.1016/j.gde.2017.07.004. View

3.
Capeling M, Huang S, Childs C, Wu J, Tsai Y, Wu A . Suspension culture promotes serosal mesothelial development in human intestinal organoids. Cell Rep. 2022; 38(7):110379. PMC: 9002973. DOI: 10.1016/j.celrep.2022.110379. View

4.
Yoshida S, Miwa H, Kawachi T, Kume S, Takahashi K . Generation of intestinal organoids derived from human pluripotent stem cells for drug testing. Sci Rep. 2020; 10(1):5989. PMC: 7136241. DOI: 10.1038/s41598-020-63151-z. View

5.
Son Y, Ki S, Thanavel R, Kim J, Lee M, Kim J . Maturation of human intestinal organoids in vitro facilitates colonization by commensal lactobacilli by reinforcing the mucus layer. FASEB J. 2020; 34(8):9899-9910. DOI: 10.1096/fj.202000063R. View