» Articles » PMID: 35902742

Prebiotic Synthesis of α-amino Acids and Orotate from α-ketoacids Potentiates Transition to Extant Metabolic Pathways

Overview
Journal Nat Chem
Specialty Chemistry
Date 2022 Jul 28
PMID 35902742
Authors
Affiliations
Soon will be listed here.
Abstract

The Strecker reaction of aldehydes is the pre-eminent pathway to explain the prebiotic origins of α-amino acids. However, biology employs transamination of α-ketoacids to synthesize amino acids which are then transformed to nucleobases, implying an evolutionary switch-abiotically or biotically-of a prebiotic pathway involving the Strecker reaction into today's biosynthetic pathways. Here we show that α-ketoacids react with cyanide and ammonia sources to form the corresponding α-amino acids through the Bucherer-Bergs pathway. An efficient prebiotic transformation of oxaloacetate to aspartate via N-carbamoyl aspartate enables the simultaneous formation of dihydroorotate, paralleling the biochemical synthesis of orotate as the precursor to pyrimidine nucleobases. Glyoxylate forms both glycine and orotate and reacts with malonate and urea to form aspartate and dihydroorotate. These results, along with the previously demonstrated protometabolic analogues of the Krebs cycle, suggest that there can be a natural emergence of congruent forerunners of biological pathways with the potential for seamless transition from prebiotic chemistry to modern metabolism.

Citing Articles

Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection.

Orsi E, Schulz-Mirbach H, Cotton C, Satanowski A, Petri H, Arnold S Nat Commun. 2025; 16(1):2168.

PMID: 40038270 PMC: 11880463. DOI: 10.1038/s41467-025-57407-3.


Nanostructural Modulation of G-Quadruplex DNA in Neurodegeneration: Orotate Interaction Revealed Through Experimental and Computational Approaches.

Falanga A, Piccialli I, Greco F, DErrico S, Nolli M, Borbone N J Neurochem. 2025; 169(1):e16296.

PMID: 39829311 PMC: 11744338. DOI: 10.1111/jnc.16296.


A New Mechanism for Formation of Glycine from Glyoxylic Acid: the Aza-Cannizzaro Reaction.

Jarois D, Schimmelpfennig L, Gellman S Chemistry. 2024; 30(71):e202403202.

PMID: 39349361 PMC: 11653230. DOI: 10.1002/chem.202403202.


Spontaneous Peptide Ligation Mediated by Cysteamine.

Barat A, Powner M JACS Au. 2024; 4(5):1752-1757.

PMID: 38818061 PMC: 11134366. DOI: 10.1021/jacsau.4c00243.


The protometabolic nature of prebiotic chemistry.

Nogal N, Sanz-Sanchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A Chem Soc Rev. 2023; 52(21):7359-7388.

PMID: 37855729 PMC: 10614573. DOI: 10.1039/d3cs00594a.


References
1.
Burton A, Stern J, Elsila J, Glavin D, Dworkin J . Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev. 2012; 41(16):5459-72. DOI: 10.1039/c2cs35109a. View

2.
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman L . Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev. 2020; 120(11):4707-4765. DOI: 10.1021/acs.chemrev.9b00664. View

3.
Yadav M, Kumar R, Krishnamurthy R . Chemistry of Abiotic Nucleotide Synthesis. Chem Rev. 2020; 120(11):4766-4805. DOI: 10.1021/acs.chemrev.9b00546. View

4.
Wu L, Sutherland J . Provisioning the origin and early evolution of life. Emerg Top Life Sci. 2020; 3(5):459-468. PMC: 6992421. DOI: 10.1042/ETLS20190011. View

5.
Harrison S, Lane N . Life as a guide to prebiotic nucleotide synthesis. Nat Commun. 2018; 9(1):5176. PMC: 6289992. DOI: 10.1038/s41467-018-07220-y. View