» Articles » PMID: 35897670

Molecular Dynamics Simulations of Curved Lipid Membranes

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Jul 28
PMID 35897670
Authors
Affiliations
Soon will be listed here.
Abstract

Eukaryotic cells contain membranes with various curvatures, from the near-plane plasma membrane to the highly curved membranes of organelles, vesicles, and membrane protrusions. These curvatures are generated and sustained by curvature-inducing proteins, peptides, and lipids, and describing these mechanisms is an important scientific challenge. In addition to that, some molecules can sense membrane curvature and thereby be trafficked to specific locations. The description of curvature sensing is another fundamental challenge. Curved lipid membranes and their interplay with membrane-associated proteins can be investigated with molecular dynamics (MD) simulations. Various methods for simulating curved membranes with MD are discussed here, including tools for setting up simulation of vesicles and methods for sustaining membrane curvature. The latter are divided into methods that exploit scaffolding virtual beads, methods that use curvature-inducing molecules, and methods applying virtual forces. The variety of simulation tools allow researcher to closely match the conditions of experimental studies of membrane curvatures.

Citing Articles

Exploring the Properties of Curved Lipid Membranes: Comparative Analysis of Atomistic and Coarse-Grained Force Fields.

Domanska M, Setny P J Phys Chem B. 2024; 128(29):7160-7171.

PMID: 38990314 PMC: 11284798. DOI: 10.1021/acs.jpcb.4c02310.


Advancements in nanoscale delivery systems: optimizing intermolecular interactions for superior drug encapsulation and precision release.

Dong E, Huo Q, Zhang J, Han H, Cai T, Liu D Drug Deliv Transl Res. 2024; 15(1):7-25.

PMID: 38573495 DOI: 10.1007/s13346-024-01579-w.


Diffusion Analyses along Mean and Gaussian-Curved Membranes with CurD.

Fabian B, Javanainen M J Phys Chem Lett. 2024; 15(11):3214-3220.

PMID: 38483514 PMC: 11444424. DOI: 10.1021/acs.jpclett.4c00338.


The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes.

Lee T, Charchar P, Separovic F, Reid G, Yarovsky I, Aguilar M Chem Sci. 2024; 15(10):3408-3427.

PMID: 38455013 PMC: 10915831. DOI: 10.1039/d3sc04523d.


Curvature sensing lipid dynamics in a mitochondrial inner membrane model.

Golla V, Boyd K, May E Commun Biol. 2024; 7(1):29.

PMID: 38182788 PMC: 10770132. DOI: 10.1038/s42003-023-05657-6.


References
1.
Doktorova M, Symons J, Levental I . Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat Chem Biol. 2020; 16(12):1321-1330. PMC: 7747298. DOI: 10.1038/s41589-020-00688-0. View

2.
Larsen A, John L, Sansom M, Corey R . Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us?. Biosci Rep. 2022; 42(4). PMC: 9008707. DOI: 10.1042/BSR20211406. View

3.
John L, Preston G, Sansom M, Clifton L . Large scale model lipid membrane movement induced by a cation switch. J Colloid Interface Sci. 2021; 596:297-311. PMC: 8109235. DOI: 10.1016/j.jcis.2021.03.078. View

4.
Bhatia V, Hatzakis N, Stamou D . A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol. 2009; 21(4):381-90. DOI: 10.1016/j.semcdb.2009.12.004. View

5.
Mandal T, Lough W, Spagnolie S, Audhya A, Cui Q . Molecular Simulation of Mechanical Properties and Membrane Activities of the ESCRT-III Complexes. Biophys J. 2020; 118(6):1333-1343. PMC: 7091516. DOI: 10.1016/j.bpj.2020.01.033. View