» Articles » PMID: 32078797

Molecular Simulation of Mechanical Properties and Membrane Activities of the ESCRT-III Complexes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2020 Feb 21
PMID 32078797
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The endosomal sorting complex required for transport (ESCRT) machinery carries out the membrane scission reactions that are required for many biological processes throughout cells. How ESCRTs bind and deform cellular membranes and ultimately produce vesicles has been a matter of active research in recent years. In this study, we use fully atomistic molecular dynamics simulations to scrutinize the structural details of a filament composed of Vps32 protomers, a major component of ESCRT-III complexes. The simulations show that both hydrophobic and electrostatic interactions between monomers help maintain the structural stability of the filament, which exhibits an intrinsic bend and twist. Our findings suggest that the accumulation of bending and twisting stresses as the filament elongates on the membrane surface likely contributes to the driving force for membrane invagination. The filament exposes a large cationic surface that senses the negatively charged lipids in the membrane, and the N-terminal amphipathic helix of the monomers not only acts as a membrane anchor but also generates significant positive membrane curvature. Taking all results together, we discuss a plausible mechanism for membrane invagination driven by ESCRT-III.

Citing Articles

SARS-CoV-2 spike fusion peptide interaction with phosphatidylserine lipid triggers membrane fusion for viral entry.

Singh P, Pahari P, Mukherjee S, Karmakar S, Hoffmann M, Mandal T mBio. 2024; 15(9):e0107724.

PMID: 39115315 PMC: 11389415. DOI: 10.1128/mbio.01077-24.


Delineating the shape of COat Protein complex-II coated membrane bud.

Paul S, Audhya A, Cui Q PNAS Nexus. 2024; 3(8):pgae305.

PMID: 39108303 PMC: 11302526. DOI: 10.1093/pnasnexus/pgae305.


Molecular mechanism of GTP binding- and dimerization-induced enhancement of Sar1-mediated membrane remodeling.

Paul S, Audhya A, Cui Q Proc Natl Acad Sci U S A. 2023; 120(8):e2212513120.

PMID: 36780528 PMC: 9974494. DOI: 10.1073/pnas.2212513120.


Modelling membrane reshaping by staged polymerization of ESCRT-III filaments.

Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner A, Lominadze E, Roux A PLoS Comput Biol. 2022; 18(10):e1010586.

PMID: 36251703 PMC: 9612822. DOI: 10.1371/journal.pcbi.1010586.


Molecular Dynamics Simulations of Curved Lipid Membranes.

Larsen A Int J Mol Sci. 2022; 23(15).

PMID: 35897670 PMC: 9331392. DOI: 10.3390/ijms23158098.


References
1.
Henne W, Stenmark H, Emr S . Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol. 2013; 5(9). PMC: 3753708. DOI: 10.1101/cshperspect.a016766. View

2.
Wieland F, Harter C . Mechanisms of vesicle formation: insights from the COP system. Curr Opin Cell Biol. 1999; 11(4):440-6. DOI: 10.1016/s0955-0674(99)80063-5. View

3.
Frankel E, Audhya A . ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol. 2017; 74:4-10. PMC: 5803488. DOI: 10.1016/j.semcdb.2017.08.020. View

4.
Marsh M, McMahon H . The structural era of endocytosis. Science. 1999; 285(5425):215-20. DOI: 10.1126/science.285.5425.215. View

5.
Spitzer C, Schellmann S, Sabovljevic A, Shahriari M, Keshavaiah C, Bechtold N . The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development. 2006; 133(23):4679-89. DOI: 10.1242/dev.02654. View