» Articles » PMID: 35894203

Effects of Temperature, PH and Sodium Chloride on Antimicrobial Activity of Magnesium Oxide Nanoparticles Against E. Coli O157:H7

Overview
Date 2022 Jul 27
PMID 35894203
Authors
Affiliations
Soon will be listed here.
Abstract

Aim: This study was done to determine the effects of temperature, pH and sodium chloride (NaCl) on antimicrobial activity of magnesium oxide (MgO) nanoparticles (NPs) against E. coli O157:H7.

Methods And Results: Culture conditions were established by varying the pH (5.0, 7.2 and 9.0), NaCl concentration (0.5, 2.0, 3.5 and 5.0%, w/v), and incubation temperatures (4, 12, 22 and 37°C). At each condition, the antimicrobial activities of MgO-NPs (0, 1, 2 and 4 mg/ml) against E. coli O157:H7 were measured. Four-way analysis of variance indicated interactions among all factors had a significant effect (p ≤ 0.05) on the antimicrobial activity of MgO-NPs. The concentration of MgO-NPs necessary to cause a 5-log reduction of E. coli O157:H7 under the most inhibitory conditions (37°C, pH 9.0, and 5.0% NaCl) was 0.50 mg/ml of MgO-NPs.

Conclusion: The antimicrobial activity of the MgO-NPs increased significantly (p ≤ 0.05) with increased temperature, pH and NaCl concentration in TSB.

Significance And Impact Of The Study: The influence of intrinsic and extrinsic factors on antimicrobial activity of MgO-NPs we found will contribute to the development of microbial decontamination strategies using MgO in the food industry.

Citing Articles

Biogenic Synthesis of Photosensitive Magnesium Oxide Nanoparticles Using Citron Waste Peel Extract and Evaluation of Their Antibacterial and Anticarcinogenic Potential.

Al Musayeib N, Amina M, Maqsood F, Bokhary K, Alrashidi N Bioinorg Chem Appl. 2024; 2024:8180102.

PMID: 38962162 PMC: 11221967. DOI: 10.1155/2024/8180102.