» Articles » PMID: 35868306

Integrative Analysis of Drug Response and Clinical Outcome in Acute Myeloid Leukemia

Overview
Journal Cancer Cell
Publisher Cell Press
Specialty Oncology
Date 2022 Jul 22
PMID 35868306
Authors
Affiliations
Soon will be listed here.
Abstract

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.

Citing Articles

Superior preclinical efficacy of co-treatment with BRG1/BRM and FLT3 inhibitor against AML cells with FLT3 mutations.

Fiskus W, Mill C, Piel J, Collins M, Hentemann M, Cuglievan B Blood Cancer J. 2025; 15(1):40.

PMID: 40089460 DOI: 10.1038/s41408-025-01251-7.


The synergistic effect of c-Myb hyperactivation and Pu.1 deficiency induces Pelger-Huët anomaly and promotes sAML.

Xu S, Hong J, Dongye M, Lin J, Xue R, Huang Z Proc Natl Acad Sci U S A. 2025; 122(9):e2416121122.

PMID: 40020188 PMC: 11892618. DOI: 10.1073/pnas.2416121122.


Fusion oncoproteins and cooperating mutations define disease phenotypes in -rearranged leukemia.

Umeda M, Hiltenbrand R, Michmerhuizen N, Barajas J, Thomas M, Arthur B medRxiv. 2025; .

PMID: 39974131 PMC: 11838931. DOI: 10.1101/2025.01.21.25320683.


Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia.

Bao X, Chen Y, Chang J, Du J, Yang C, Wu Y BMC Cancer. 2025; 25(1):273.

PMID: 39955536 PMC: 11830216. DOI: 10.1186/s12885-025-13658-3.


An integrative multiparametric approach stratifies putative distinct phenotypes of blast phase chronic myelomonocytic leukemia.

Gurashi K, Wang Y, Amaral F, Spence K, Cant R, Yao C Cell Rep Med. 2025; 6(2):101933.

PMID: 39892394 PMC: 11866517. DOI: 10.1016/j.xcrm.2025.101933.


References
1.
Fuller T, Ghazalpour A, Aten J, Drake T, Lusis A, Horvath S . Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome. 2007; 18(6-7):463-72. PMC: 1998880. DOI: 10.1007/s00335-007-9043-3. View

2.
Scheib J, Sullivan C, Carter B . Jedi-1 and MEGF10 signal engulfment of apoptotic neurons through the tyrosine kinase Syk. J Neurosci. 2012; 32(38):13022-31. PMC: 3464495. DOI: 10.1523/JNEUROSCI.6350-11.2012. View

3.
Krivtsov A, Rozov F, Zinovyeva M, Hendrikx P, Jiang Y, Visser J . Jedi--a novel transmembrane protein expressed in early hematopoietic cells. J Cell Biochem. 2007; 101(3):767-84. DOI: 10.1002/jcb.21232. View

4.
Tyner J, Tognon C, Bottomly D, Wilmot B, Kurtz S, Savage S . Functional genomic landscape of acute myeloid leukaemia. Nature. 2018; 562(7728):526-531. PMC: 6280667. DOI: 10.1038/s41586-018-0623-z. View

5.
Blucher A, McWeeney S, Stein L, Wu G . Visualization of drug target interactions in the contexts of pathways and networks with ReactomeFIViz. F1000Res. 2019; 8:908. PMC: 6644836. DOI: 10.12688/f1000research.19592.1. View