» Articles » PMID: 35862514

Scaffolding Protein Functional Sites Using Deep Learning

Abstract

The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, "constrained hallucination," optimizes sequences such that their predicted structures contain the desired functional site. The second approach, "inpainting," starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.

Citing Articles

Design of high-affinity binders to immune modulating receptors for cancer immunotherapy.

Yang W, Hicks D, Ghosh A, Schwartze T, Conventry B, Goreshnik I Nat Commun. 2025; 16(1):2001.

PMID: 40011465 PMC: 11865580. DOI: 10.1038/s41467-025-57192-z.


De novo design of transmembrane fluorescence-activating proteins.

Zhu J, Liang M, Sun K, Wei Y, Guo R, Zhang L Nature. 2025; .

PMID: 39972138 DOI: 10.1038/s41586-025-08598-8.


A truncated pre-F protein mRNA vaccine elicits an enhanced immune response and protection against respiratory syncytial virus.

Lin M, Yin Y, Zhao X, Wang C, Zhu X, Zhan L Nat Commun. 2025; 16(1):1386.

PMID: 39910047 PMC: 11799228. DOI: 10.1038/s41467-025-56302-1.


Deep Learning Approaches for the Prediction of Protein Functional Sites.

Pitarch B, Pazos F Molecules. 2025; 30(2).

PMID: 39860084 PMC: 11767512. DOI: 10.3390/molecules30020214.


Molecular Display of the Animal Meta-Venome for Discovery of Novel Therapeutic Peptides.

Hsiao M, Miao Y, Liu Z, Schutze K, Limjunyawong N, Chien D Mol Cell Proteomics. 2025; 24(2):100901.

PMID: 39746545 PMC: 11833617. DOI: 10.1016/j.mcpro.2024.100901.


References
1.
Yang C, Sesterhenn F, Bonet J, van Aalen E, Scheller L, Abriata L . Bottom-up de novo design of functional proteins with complex structural features. Nat Chem Biol. 2021; 17(4):492-500. DOI: 10.1038/s41589-020-00699-x. View

2.
Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park J . Design of protein-binding proteins from the target structure alone. Nature. 2022; 605(7910):551-560. PMC: 9117152. DOI: 10.1038/s41586-022-04654-9. View

3.
Yanez M, Gil-Longo J, Campos-Toimil M . Calcium binding proteins. Adv Exp Med Biol. 2012; 740:461-82. DOI: 10.1007/978-94-007-2888-2_19. View

4.
Madani A, Krause B, Greene E, Subramanian S, Mohr B, Holton J . Large language models generate functional protein sequences across diverse families. Nat Biotechnol. 2023; 41(8):1099-1106. PMC: 10400306. DOI: 10.1038/s41587-022-01618-2. View

5.
Biswas S, Khimulya G, Alley E, Esvelt K, Church G . Low-N protein engineering with data-efficient deep learning. Nat Methods. 2021; 18(4):389-396. DOI: 10.1038/s41592-021-01100-y. View