» Articles » PMID: 28953867

Massively Parallel De Novo Protein Design for Targeted Therapeutics

Abstract

De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

Citing Articles

Oligomerization Function of the Native Exon 5 Sequence of Ameloblastin Fused with Calmodulin.

Zouharova M, Herman P, Bednarova L, Vetyskova V, Hadravova R, Postulkova K ACS Omega. 2025; 10(8):7741-7751.

PMID: 40060873 PMC: 11886713. DOI: 10.1021/acsomega.4c07953.


Design of high-affinity binders to immune modulating receptors for cancer immunotherapy.

Yang W, Hicks D, Ghosh A, Schwartze T, Conventry B, Goreshnik I Nat Commun. 2025; 16(1):2001.

PMID: 40011465 PMC: 11865580. DOI: 10.1038/s41467-025-57192-z.


Self-assembled proteomimetic (SAP) with antibody-like binding from short PNA-peptide conjugates.

Brennecke B, Civili B, Sabale P, Barluenga S, Meyer B, Winssinger N Proc Natl Acad Sci U S A. 2025; 122(7):e2412850122.

PMID: 39951509 PMC: 11848287. DOI: 10.1073/pnas.2412850122.


High-throughput discovery of inhibitory protein fragments with AlphaFold.

Savinov A, Swanson S, Keating A, Li G Proc Natl Acad Sci U S A. 2025; 122(6):e2322412122.

PMID: 39899719 PMC: 11831152. DOI: 10.1073/pnas.2322412122.


De novo design of protein minibinder agonists of TLR3.

Adams C, Kim H, Burtner A, Lee D, Dobbins C, Criswell C Nat Commun. 2025; 16(1):1234.

PMID: 39890776 PMC: 11785957. DOI: 10.1038/s41467-025-56369-w.


References
1.
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J, Dror R . Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010; 78(8):1950-8. PMC: 2970904. DOI: 10.1002/prot.22711. View

2.
Berger S, Procko E, Margineantu D, Lee E, Shen B, Zelter A . Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. Elife. 2016; 5. PMC: 5127641. DOI: 10.7554/eLife.20352. View

3.
Silva D, Correia B, Procko E . Motif-Driven Design of Protein-Protein Interfaces. Methods Mol Biol. 2016; 1414:285-304. DOI: 10.1007/978-1-4939-3569-7_17. View

4.
King C, Garza E, Mazor R, Linehan J, Pastan I, Pepper M . Removing T-cell epitopes with computational protein design. Proc Natl Acad Sci U S A. 2014; 111(23):8577-82. PMC: 4060723. DOI: 10.1073/pnas.1321126111. View

5.
Corti D, Voss J, Gamblin S, Codoni G, Macagno A, Jarrossay D . A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011; 333(6044):850-6. DOI: 10.1126/science.1205669. View