» Articles » PMID: 35857500

RRM2 Enhances MYCN-driven Neuroblastoma Formation and Acts As a Synergistic Target with CHK1 Inhibition

Abstract

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.

Citing Articles

Synergistic machine learning models utilizing ferroptosis-related genes for improved neuroblastoma outcome prediction.

Cheng J, Dong X, Yang Y, Qin X, Zhou X, Zhang D Transl Pediatr. 2025; 13(12):2164-2182.

PMID: 39822999 PMC: 11732634. DOI: 10.21037/tp-24-323.


Ribonucleotide reductase small subunit M2 promotes the proliferation of esophageal squamous cell carcinoma cells HuR-mediated mRNA stabilization.

Zhang J, Wu Q, Xie Y, Li F, Wei H, Jiang Y Acta Pharm Sin B. 2024; 14(10):4329-4344.

PMID: 39525580 PMC: 11544187. DOI: 10.1016/j.apsb.2024.07.022.


Single cell sequencing of zebrafish kidney marrows reveals AHR2-dependent endogenous regulation of hematopoiesis.

Dasgupta S, Goodale B, Tanguay R bioRxiv. 2024; .

PMID: 38712290 PMC: 11071399. DOI: 10.1101/2024.04.23.590755.


A structure-based designed small molecule depletes hRpn13 and a select group of KEN box proteins.

Lu X, Chandravanshi M, Sabbasani V, Gaikwad S, Hughitt V, Gyabaah-Kessie N Nat Commun. 2024; 15(1):2485.

PMID: 38509117 PMC: 10954691. DOI: 10.1038/s41467-024-46644-7.


Preclinical exploration of the DNA damage response pathway using the interactive neuroblastoma cell line explorer CLEAN.

Gabre J, Merseburger P, Claeys A, Siaw J, Bekaert S, Speleman F NAR Cancer. 2024; 6(1):zcad062.

PMID: 38213997 PMC: 10782898. DOI: 10.1093/narcan/zcad062.


References
1.
Blosser W, Dempsey J, McNulty A, Rao X, Ebert P, Lowery C . A pan-cancer transcriptome analysis identifies replication fork and innate immunity genes as modifiers of response to the CHK1 inhibitor prexasertib. Oncotarget. 2020; 11(3):216-236. PMC: 6980627. DOI: 10.18632/oncotarget.27400. View

2.
Pfister S, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G . Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell. 2015; 28(5):557-568. PMC: 4643307. DOI: 10.1016/j.ccell.2015.09.015. View

3.
Saldivar J, Cortez D, Cimprich K . The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol. 2017; 18(10):622-636. PMC: 5796526. DOI: 10.1038/nrm.2017.67. View

4.
Liang M, Zhao T, Ma L, Guo Y . CHK1 inhibition sensitizes pancreatic cancer cells to gemcitabine via promoting CDK-dependent DNA damage and ribonucleotide reductase downregulation. Oncol Rep. 2017; 39(3):1322-1330. DOI: 10.3892/or.2017.6168. View

5.
Zhu S, Lee J, Guo F, Shin J, Perez-Atayde A, Kutok J . Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell. 2012; 21(3):362-73. PMC: 3315700. DOI: 10.1016/j.ccr.2012.02.010. View