» Articles » PMID: 35846343

Pan-phylum Analyses of Nematode Endocannabinoid Signalling Systems Highlight Novel Opportunities for Parasite Drug Target Discovery

Overview
Specialty Endocrinology
Date 2022 Jul 18
PMID 35846343
Authors
Affiliations
Soon will be listed here.
Abstract

The endocannabinoid signalling (ECS) system is a complex lipid signalling pathway that modulates diverse physiological processes in both vertebrate and invertebrate systems. In nematodes, knowledge of endocannabinoid (EC) biology is derived primarily from the free-living model species , where ECS has been linked to key aspects of nematode biology. The conservation and complexity of nematode ECS beyond is largely uncharacterised, undermining the understanding of ECS biology in nematodes including species with key importance to human, veterinary and plant health. In this study we exploited publicly available omics datasets, bioinformatics and phylogenetic analyses to examine the presence, conservation and life stage expression profiles of EC-effectors across phylum Nematoda. Our data demonstrate that: (i) ECS is broadly conserved across phylum Nematoda, including in therapeutically and agriculturally relevant species; (ii) EC-effectors appear to display clade and lifestyle-specific conservation patterns; (iii) filarial species possess a reduced EC-effector complement; (iv) there are key differences between nematode and vertebrate EC-effectors; (v) life stage-, tissue- and sex-specific EC-effector expression profiles suggest a role for ECS in therapeutically relevant parasitic nematodes. To our knowledge, this study represents the most comprehensive characterisation of ECS pathways in phylum Nematoda and inform our understanding of nematode ECS complexity. Fundamental knowledge of nematode ECS systems will seed follow-on functional studies in key nematode parasites to underpin novel drug target discovery efforts.

Citing Articles

Characterization of a Fatty Acid Amide Hydrolase (FAAH) in Hirudo Verbana.

Kabeiseman E, Paulsen R, Burrell B Neurochem Res. 2024; 49(11):3015-3029.

PMID: 39093361 PMC: 11450075. DOI: 10.1007/s11064-024-04216-7.


Characterization of a Fatty Acid Amide Hydrolase (FAAH) in Hirudo verbana.

Kabeiseman E, Paulsen R, Burrell B Res Sq. 2024; .

PMID: 38699363 PMC: 11065068. DOI: 10.21203/rs.3.rs-4271305/v1.


Cannabinoids and healthy ageing: the potential for extending healthspan and lifespan in preclinical models with an emphasis on Caenorhabditis elegans.

Wang Z, Arnold J Geroscience. 2024; 46(6):5643-5661.

PMID: 38696056 PMC: 11493940. DOI: 10.1007/s11357-024-01162-8.


questions-a research agenda for the future.

Al-Jawabreh R, Anderson R, Atkinson L, Bickford-Smith J, Bradbury R, Breloer M Philos Trans R Soc Lond B Biol Sci. 2023; 379(1894):20230004.

PMID: 38008122 PMC: 10676812. DOI: 10.1098/rstb.2023.0004.

References
1.
Ahn K, Johnson D, Cravatt B . Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin Drug Discov. 2010; 4(7):763-784. PMC: 2882713. DOI: 10.1517/17460440903018857. View

2.
Blaxter M, De Ley P, Garey J, Liu L, Scheldeman P, Vierstraete A . A molecular evolutionary framework for the phylum Nematoda. Nature. 1998; 392(6671):71-5. DOI: 10.1038/32160. View

3.
Castillo P, Younts T, Chavez A, Hashimotodani Y . Endocannabinoid signaling and synaptic function. Neuron. 2012; 76(1):70-81. PMC: 3517813. DOI: 10.1016/j.neuron.2012.09.020. View

4.
Rossignoli G, Grottesi A, Bisello G, Montioli R, Borri Voltattorni C, Paiardini A . Cysteine 180 Is a Redox Sensor Modulating the Activity of Human Pyridoxal 5'-Phosphate Histidine Decarboxylase. Biochemistry. 2018; 57(44):6336-6348. DOI: 10.1021/acs.biochem.8b00625. View

5.
Elphick M . The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci. 2012; 367(1607):3201-15. PMC: 3481536. DOI: 10.1098/rstb.2011.0394. View