» Articles » PMID: 35844419

Hypoxia, a Dynamic Tool to Amplify the Gingival Mesenchymal Stem Cells Potential for Neurotrophic Factor Secretion

Abstract

Gingival mesenchymal stem cells (GMSCs) have significant regenerative potential. Their potential applications range from the treatment of inflammatory diseases, wound healing, and oral disorders. Preconditioning these stem cells can optimize their biological properties. Hypoxia preconditioning of MSCs improves stem cell properties like proliferation, survival, and differentiation potential. This research explored the possible impact of hypoxia on the pluripotent stem cell properties that GMSCs possess. We evaluated the morphology, stemness, neurotrophic factors, and stemness-related genes. We compared the protein levels of secreted neurotrophic factors between normoxic and hypoxic GMSC-conditioned media (GMSC-CM). Results revealed that hypoxic cultured GMSC's had augmented expression of neurotrophic factors BDNF, GDNF, VEGF, and IGF1 and stemness-related gene NANOG. Hypoxic GMSCs showed decreased expression of the OCT4 gene. In hypoxic GMSC-CM, the neurotrophic factors secretions were significantly higher than normoxic GMSC-CM. Our data demonstrate that culturing of GMSCs in hypoxia enhances the secretion of neurotrophic factors that can lead to neuronal lineage differentiation.

Citing Articles

Gingival mesenchymal stem cells: Biological properties and therapeutic applications.

Peng Y, Jaar J, Tran S J Oral Biol Craniofac Res. 2024; 14(5):547-569.

PMID: 39108352 PMC: 11301388. DOI: 10.1016/j.jobcr.2024.07.003.


Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals.

Picazo R, Rojo C, Rodriguez-Quiros J, Gonzalez-Gil A Animals (Basel). 2024; 14(9).

PMID: 38731367 PMC: 11083242. DOI: 10.3390/ani14091363.


The effect of preconditioning hypoxia in schwann-like-cells-derived adipose mesenchymal stem cells and rat sciatic nerve-derived stem cells: experimental research.

Sumarwoto T, Suroto H, Utomo D, Prakoeswa C, Tinduh D, Notobroto H Ann Med Surg (Lond). 2023; 85(7):3439-3445.

PMID: 37427197 PMC: 10328659. DOI: 10.1097/MS9.0000000000000777.


A Response to Article "Hypoxia Effects in Intervertebral Disc-Derived Stem Cells and Discus Secretomes: An in vitro Study" [Letter].

Rinendyaputri R, Noviantari A, Lienggonegoro L Stem Cells Cloning. 2022; 15:63-64.

PMID: 36300159 PMC: 9590353. DOI: 10.2147/SCCAA.S391016.


Mesenchymal stem cells and their microenvironment.

Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F Stem Cell Res Ther. 2022; 13(1):429.

PMID: 35987711 PMC: 9391632. DOI: 10.1186/s13287-022-02985-y.

References
1.
Dai Y, Xu M, Wang Y, Pasha Z, Li T, Ashraf M . HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol. 2007; 42(6):1036-44. PMC: 1995444. DOI: 10.1016/j.yjmcc.2007.04.001. View

2.
Hmadcha A, Martin-Montalvo A, Gauthier B, Soria B, Capilla-Gonzalez V . Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol. 2020; 8:43. PMC: 7013101. DOI: 10.3389/fbioe.2020.00043. View

3.
Woodsworth D, Holt R . Cell-Based Therapeutics: Making a Faustian Pact with Biology. Trends Mol Med. 2017; 23(2):104-115. DOI: 10.1016/j.molmed.2016.12.004. View

4.
Ge Q, Zhang H, Hou J, Wan L, Cheng W, Wang X . VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep. 2017; 17(1):1667-1675. PMC: 5780109. DOI: 10.3892/mmr.2017.8059. View

5.
Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J . Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411):143-7. DOI: 10.1126/science.284.5411.143. View