» Articles » PMID: 35831531

Generating Specificity in Genome Regulation Through Transcription Factor Sensitivity to Chromatin

Overview
Journal Nat Rev Genet
Specialty Genetics
Date 2022 Jul 13
PMID 35831531
Authors
Affiliations
Soon will be listed here.
Abstract

Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.

Citing Articles

Pervasive and programmed nucleosome distortion patterns on single mammalian chromatin fibers.

Yang M, Richter H, Wang S, McNally C, Harris N, Dhillon S bioRxiv. 2025; .

PMID: 39896524 PMC: 11785029. DOI: 10.1101/2025.01.17.633622.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


Nucleosome dynamics render heterochromatin accessible in living human cells.

Prajapati H, Xu Z, Eriksson P, Clark D bioRxiv. 2025; .

PMID: 39803586 PMC: 11722403. DOI: 10.1101/2024.12.10.627825.


ZNF143 is a transcriptional regulator of nuclear-encoded mitochondrial genes that acts independently of looping and CTCF.

Magnitov M, Maresca M, Alonso Saiz N, Teunissen H, Dong J, Sathyan K Mol Cell. 2024; 85(1):24-41.e11.

PMID: 39708805 PMC: 11687419. DOI: 10.1016/j.molcel.2024.11.031.


Protocol to profile snATAC-seq datasets and motif enrichment analysis during zebrafish early embryogenesis.

Zhou J, Yang X, Lin X, Zhao K, Wang X, Dong Z STAR Protoc. 2024; 5(4):103501.

PMID: 39671284 PMC: 11697690. DOI: 10.1016/j.xpro.2024.103501.


References
1.
Dhaeseleer P . What are DNA sequence motifs?. Nat Biotechnol. 2006; 24(4):423-5. DOI: 10.1038/nbt0406-423. View

2.
Hansen L, Marino-Ramirez L, Landsman D . Differences in local genomic context of bound and unbound motifs. Gene. 2012; 506(1):125-34. PMC: 3412921. DOI: 10.1016/j.gene.2012.06.005. View

3.
Slattery M, Zhou T, Yang L, Dantas Machado A, Gordan R, Rohs R . Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci. 2014; 39(9):381-99. PMC: 4149858. DOI: 10.1016/j.tibs.2014.07.002. View

4.
Wunderlich Z, Mirny L . Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 2009; 25(10):434-40. PMC: 3697852. DOI: 10.1016/j.tig.2009.08.003. View

5.
Adams C, Workman J . Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol. 1995; 15(3):1405-21. PMC: 230365. DOI: 10.1128/MCB.15.3.1405. View