The Efficacy of Tucatinib-based Therapeutic Approaches for HER2-positive Breast Cancer
Overview
Authors
Affiliations
Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in approximately 15-20% of breast cancer cases. HER2 is a member of the epidermal growth factor receptor (EGFR) family with tyrosinase kinase activity, and its overexpression is linked to poor prognosis and shorter progression-free survival (PFS) and overall survival (OS). Among various treatment options, HER2-targeting monoclonal antibodies and tyrosine kinase inhibitors (TKIs) have mostly been applied in recent decades to treat HER2-positive (HER2+) breast cancer patients. Although positive clinical outcomes were documented in both advanced disease and neoadjuvant settings, the development of resistance mechanisms to such approaches has been one of the major challenges with the continuous usage of these drugs. In addition, patients who experience disease progression after treatment with multiple HER2-targeted therapies often have limited treatment options. The Food and Drug Administration (FDA) has recently approved a new TKI (i.e., tucatinib) for use in combination with immunotherapy and/or chemotherapeutic agents for the treatment of advanced-stage/metastatic HER2+ breast cancer. This review highlights recent updates on the efficacy of tucatinib-based therapeutic approaches in experimental models as well as in the clinical settings of HER2+ breast cancer.
Zhang X, Yin Y, Yu Q, Chen X, Cheng Y Front Oncol. 2025; 14:1492203.
PMID: 39991185 PMC: 11842234. DOI: 10.3389/fonc.2024.1492203.
Imam M, Ji J, Zhang Z, Yan S Front Pharmacol. 2025; 15:1493188.
PMID: 39867656 PMC: 11757020. DOI: 10.3389/fphar.2024.1493188.
Application and challenge of HER2DX genomic assay in HER2+ breast cancer treatment.
Ma S, Zhou Y, Ma D, Qi X, Jiang J Am J Cancer Res. 2024; 14(9):4218-4235.
PMID: 39417184 PMC: 11477836. DOI: 10.62347/JWHA6355.
Survival prediction and analysis of drug-resistance genes in HER2-positive breast cancer.
Yang L, Chen S, Wang M, Peng S, Zhao H, Yang P Heliyon. 2024; 10(19):e38221.
PMID: 39386771 PMC: 11462380. DOI: 10.1016/j.heliyon.2024.e38221.
Elucidating the evolving role of cuproptosis in breast cancer progression.
Zhu Z, Zhu K, Zhang J, Zhou Y, Zhang Q Int J Biol Sci. 2024; 20(12):4872-4887.
PMID: 39309446 PMC: 11414396. DOI: 10.7150/ijbs.98806.