» Articles » PMID: 35778420

Biomarkers of Nanomaterials Hazard from Multi-layer Data

Abstract

There is an urgent need to apply effective, data-driven approaches to reliably predict engineered nanomaterial (ENM) toxicity. Here we introduce a predictive computational framework based on the molecular and phenotypic effects of a large panel of ENMs across multiple in vitro and in vivo models. Our methodology allows for the grouping of ENMs based on multi-omics approaches combined with robust toxicity tests. Importantly, we identify mRNA-based toxicity markers and extensively replicate them in multiple independent datasets. We find that models based on combinations of omics-derived features and material intrinsic properties display significantly improved predictive accuracy as compared to physicochemical properties alone.

Citing Articles

Safety Assessment of Graphene-Based Materials.

Fadeel B, Baker J, Ballerini L, Bussy C, Candotto Carniel F, Tretiach M Small. 2025; 21(7):e2404570.

PMID: 39811884 PMC: 11840464. DOI: 10.1002/smll.202404570.


Nanotoxicology: developments and new insights.

Abonyi H, Peter I, Onwuka A, Achile P, Obi C, Akunne M Nanomedicine (Lond). 2024; 20(2):225-241.

PMID: 39723590 PMC: 11731054. DOI: 10.1080/17435889.2024.2443385.


A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes.

Del Giudice G, Serra A, Pavel A, Maia M, Saarimaki L, Fratello M Adv Sci (Weinh). 2024; 11(32):e2400389.

PMID: 38923832 PMC: 11348149. DOI: 10.1002/advs.202400389.


Enhancing prediction accuracy of coronary artery disease through machine learning-driven genomic variant selection.

Alireza Z, Maleeha M, Kaikkonen M, Fortino V J Transl Med. 2024; 22(1):356.

PMID: 38627847 PMC: 11020205. DOI: 10.1186/s12967-024-05090-1.


Advancing chemical safety assessment through an omics-based characterization of the test system-chemical interaction.

Del Giudice G, Migliaccio G, DAlessandro N, Saarimaki L, Maia M, Annala M Front Toxicol. 2023; 5:1294780.

PMID: 38026842 PMC: 10673692. DOI: 10.3389/ftox.2023.1294780.


References
1.
Dix D, Houck K, Martin M, Richard A, Setzer R, Kavlock R . The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci. 2006; 95(1):5-12. DOI: 10.1093/toxsci/kfl103. View

2.
Duffin R, Tran L, Brown D, Stone V, Donaldson K . Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol. 2007; 19(10):849-56. DOI: 10.1080/08958370701479323. View

3.
Diaz-Uriarte R . GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinformatics. 2007; 8:328. PMC: 2034606. DOI: 10.1186/1471-2105-8-328. View

4.
Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J . Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 2009; 6:14. PMC: 2685765. DOI: 10.1186/1743-8977-6-14. View

5.
Liu Y, Lu F, Wang L, Wang Y, Wu C . Long non‑coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA‑455‑3p/SMAD3 axis. Mol Med Rep. 2021; 23(3). PMC: 7845585. DOI: 10.3892/mmr.2021.11857. View