» Articles » PMID: 35774059

Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process

Overview
Date 2022 Jul 1
PMID 35774059
Authors
Affiliations
Soon will be listed here.
Abstract

LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).

Citing Articles

Recent advances in detection techniques for vitamin analysis: A comprehensive review.

Li X, Lv H, Luo W, Yang W, Kong L, Zhu Q Food Chem X. 2025; 26:102226.

PMID: 39995404 PMC: 11848456. DOI: 10.1016/j.fochx.2025.102226.


Rapid detection of Pan-Avian Influenza Virus and H5, H7, H9 subtypes of Avian Influenza Virus using CRISPR/Cas13a and lateral flow assay.

Yang Y, Yang Z, Zhang X, Niu B, Huang Q, Li Y Poult Sci. 2024; 104(2):104745.

PMID: 39740498 PMC: 11750554. DOI: 10.1016/j.psj.2024.104745.


Rapid evaluation of hepatocellular carcinoma by detecting plasma exosomes with time-resolved fluorescence immunochromatographic test strips.

Li J, Su J, Li M, Wu Y, Chen H, Fu X Mikrochim Acta. 2024; 192(1):39.

PMID: 39731678 DOI: 10.1007/s00604-024-06903-2.


Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label.

Hendrickson O, Byzova N, Panferov V, Zvereva E, Xing S, Zherdev A Biosensors (Basel). 2024; 14(12).

PMID: 39727863 PMC: 11674194. DOI: 10.3390/bios14120598.


Au@Pt nanoparticles-based signal-enhanced lateral flow immunoassay for ultrasensitive naked-eye detection of SARS-CoV-2.

Li X, Li H, Zhu J, Yu D, Abulaiti T, Zeng J Mikrochim Acta. 2024; 191(11):657.

PMID: 39382589 DOI: 10.1007/s00604-024-06697-3.


References
1.
Bian L, Xiong Y, Zhao H, Guo H, Li Z, Ye K . Europium (III) chelate nanoparticle-based lateral flow immunoassay strips for rapid and quantitative detection of cystatin C in serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2022; 1194:123133. DOI: 10.1016/j.jchromb.2022.123133. View

2.
Zhang W, Duan H, Chen R, Ma T, Zeng L, Leng Y . Effect of different-sized gold nanoflowers on the detection performance of immunochromatographic assay for human chorionic gonadotropin detection. Talanta. 2019; 194:604-610. DOI: 10.1016/j.talanta.2018.10.080. View

3.
Smith J, Sapsford K, Tan W, Ligler F . Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays. Anal Biochem. 2010; 410(1):124-32. PMC: 3670747. DOI: 10.1016/j.ab.2010.11.005. View

4.
Foubert A, Beloglazova N, Gordienko A, Tessier M, Drijvers E, Hens Z . Development of a Rainbow Lateral Flow Immunoassay for the Simultaneous Detection of Four Mycotoxins. J Agric Food Chem. 2016; 65(33):7121-7130. DOI: 10.1021/acs.jafc.6b04157. View

5.
Wakefield , Keron , Dobson , Hutchison . Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles. J Colloid Interface Sci. 1999; 215(1):179-182. DOI: 10.1006/jcis.1999.6225. View