» Articles » PMID: 35763935

A Bioinspired Carbon Monoxide Delivery System Prevents Acute Kidney Injury and the Progression to Chronic Kidney Disease

Abstract

Renal ischemia-reperfusion (IR)-induced tissue hypoxia causes impaired energy metabolism and oxidative stress. These conditions lead to tubular cell damage, which is a cause of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD). Three key molecules, i.e., hypoxia-inducible factor-1α (HIF-1α), AMP-activated protein kinase (AMPK), and nuclear factor E2-related factor 2 (Nrf2), have the potential to protect tubular cells from these disorders. Although carbon monoxide (CO) can comprehensively induce these three molecules via the action of mitochondrial reactive oxygen species (mtROS), the issue of whether CO induces these molecules in tubular cells remains unclear. Herein, we report that CO-enriched red blood cells (CO-RBC) cell therapy, the inspiration for which is the in vivo CO delivery system, exerts a renoprotective effect on hypoxia-induced tubular cell damage via the upregulation of the above molecules. Experiments using a mitochondria-specific antioxidant provide evidence to show that CO-driven mtROS partially contributes to the upregulation of the aforementioned molecules in tubular cells. CO-RBC ameliorates the pathological conditions of IR-induced AKI model mice via activation of these molecules. CO-RBC also prevents renal fibrosis via the suppression of epithelial mesenchymal transition and transforming growth factor-β1 secretion in an IR-induced AKI to CKD model mice. In conclusion, our results confirm that the bioinspired CO delivery system prevents the pathological conditions of both AKI and AKI to CKD via the amelioration of hypoxia inducible tubular cell damage, thereby making it an effective cell therapy for treating the progression to CKD.

Citing Articles

Protective role of vitamin D receptor against mitochondrial calcium overload from PM-Induced injury in renal tubular cells.

Lu M, Zhan Z, Li D, Chen H, Li A, Hu J Redox Biol. 2025; 80:103518.

PMID: 39891958 PMC: 11836507. DOI: 10.1016/j.redox.2025.103518.


Albumin-fused thioredoxin ameliorates high-fat diet-induced non-alcoholic steatohepatitis.

Murata R, Watanabe H, Iwakiri R, Chikamatsu M, Satoh T, Noguchi I Heliyon. 2024; 10(3):e25485.

PMID: 38352801 PMC: 10861950. DOI: 10.1016/j.heliyon.2024.e25485.


Association of acute kidney injury with the risk of cognitive impairment or dementia: a systematic review and meta-analysis.

Wang J, Xu X, Wang C, Ye D, Chen R, Peng P Ren Fail. 2023; 45(2):2279647.

PMID: 37964563 PMC: 10653765. DOI: 10.1080/0886022X.2023.2279647.


Carbon Monoxide-Loaded Red Blood Cell Prevents the Onset of Cisplatin-Induced Acute Kidney Injury.

Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N Antioxidants (Basel). 2023; 12(9).

PMID: 37760008 PMC: 10526101. DOI: 10.3390/antiox12091705.


Cytoprotective Role of Heme Oxygenase-1 in Cancer Chemoresistance: Focus on Antioxidant, Antiapoptotic, and Pro-Autophagy Properties.

Wang H, Cheng Q, Bao L, Li M, Chang K, Yi X Antioxidants (Basel). 2023; 12(6).

PMID: 37371947 PMC: 10295073. DOI: 10.3390/antiox12061217.


References
1.
Jiang N, Zhao H, Han Y, Li L, Xiong S, Zeng L . HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics. Cell Prolif. 2020; 53(11):e12909. PMC: 7653251. DOI: 10.1111/cpr.12909. View

2.
Yamamoto S, Yamamoto M, Nakamura J, Mii A, Yamamoto S, Takahashi M . Spatiotemporal ATP Dynamics during AKI Predict Renal Prognosis. J Am Soc Nephrol. 2020; 31(12):2855-2869. PMC: 7790205. DOI: 10.1681/ASN.2020050580. View

3.
SJOSTRAND T . Endogenous formation of carbon monoxide; the CO concentration in the inspired and expired air of hospital patients. Acta Physiol Scand. 1951; 22(2-3):137-41. DOI: 10.1111/j.1748-1716.1951.tb00762.x. View

4.
Chi P, Lin C, Chen Y, Hsiao L, Yang C . CO Induces Nrf2-Dependent Heme Oxygenase-1 Transcription by Cooperating with Sp1 and c-Jun in Rat Brain Astrocytes. Mol Neurobiol. 2014; 52(1):277-92. DOI: 10.1007/s12035-014-8869-4. View

5.
Li H, Xia Z, Chen Y, Qi D, Zheng H . Mechanism and Therapies of Oxidative Stress-Mediated Cell Death in Ischemia Reperfusion Injury. Oxid Med Cell Longev. 2018; 2018:2910643. PMC: 6035842. DOI: 10.1155/2018/2910643. View