» Articles » PMID: 35744848

Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2022 Jun 24
PMID 35744848
Authors
Affiliations
Soon will be listed here.
Abstract

Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.

Citing Articles

The role of lactate metabolism and lactylation in pulmonary arterial hypertension.

Peng T, Lu J, Zheng X, Zeng C, He Y Respir Res. 2025; 26(1):99.

PMID: 40075458 PMC: 11905457. DOI: 10.1186/s12931-025-03163-3.


Hypoxia Combined With Interleukin-17 Regulates Hypoxia-Inducible Factor-1α/Endothelial Nitric Oxide Synthase Expression in Pulmonary Artery Endothelial Cells.

Sun S, Mao J, Ding Y, Liu L, Gong J, Yang S J Cell Mol Med. 2025; 29(2):e70289.

PMID: 39823269 PMC: 11740980. DOI: 10.1111/jcmm.70289.


Exploring the pharmacological mechanisms for alleviating OSA: Adenosine A2A receptor downregulation of the PI3K/Akt/HIF‑1 pathway (Review).

Ma N, Liu P, Li N, Hu Y, Kang L Biomed Rep. 2024; 22(2):21.

PMID: 39720297 PMC: 11668141. DOI: 10.3892/br.2024.1899.


Pulmonary Arterial Hypertension and Cardioprotective Interventions.

Ojopi E, Tonon C, Okoshi K, Okoshi M Arq Bras Cardiol. 2024; 121(7):e20240445.

PMID: 39292052 PMC: 11495815. DOI: 10.36660/abc.20240445.


Noninvasive Monitoring of Severe Pulmonary Artery Hypertension in Atrial Septal Defect Patients: Role of Serum Bilirubin Combined with Uric Acid.

Zhang F, Lin D, Jin Q, Fan J, Chen D, Guan L Rev Cardiovasc Med. 2024; 25(2):50.

PMID: 39077349 PMC: 11263178. DOI: 10.31083/j.rcm2502050.


References
1.
Dianat M, Radan M, Mard S, Sohrabi F, Saryazdi S . Contribution of reactive oxygen species via the OXR1 signaling pathway in the pathogenesis of monocrotaline-induced pulmonary arterial hypertension: The protective role of Crocin. Life Sci. 2020; 256:117848. DOI: 10.1016/j.lfs.2020.117848. View

2.
Demarco V, Habibi J, Whaley-Connell A, Schneider R, Sowers J, Andresen B . Rosuvastatin ameliorates the development of pulmonary arterial hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol. 2009; 297(3):H1128-39. PMC: 2755976. DOI: 10.1152/ajpheart.00048.2009. View

3.
Budas G, Boehm M, Kojonazarov B, Viswanathan G, Tian X, Veeroju S . ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2017; 197(3):373-385. DOI: 10.1164/rccm.201703-0502OC. View

4.
Grzegorzewska A, Seta F, Han R, Czajka C, Makino K, Stawski L . Dimethyl Fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci Rep. 2017; 7:41605. PMC: 5288696. DOI: 10.1038/srep41605. View

5.
Bourgeois A, Omura J, Habbout K, Bonnet S, Boucherat O . Pulmonary arterial hypertension: New pathophysiological insights and emerging therapeutic targets. Int J Biochem Cell Biol. 2018; 104:9-13. DOI: 10.1016/j.biocel.2018.08.015. View