» Articles » PMID: 35712758

Selective Nitridation Crafted a High-Density, Carbon-Free Heterostructure Host with Built-In Electric Field for Enhanced Energy Density Li-S Batteries

Overview
Journal Adv Sci (Weinh)
Date 2022 Jun 17
PMID 35712758
Authors
Affiliations
Soon will be listed here.
Abstract

To achieve both high gravimetric and volumetric energy densities of lithium-sulfur (Li-S) batteries, it is essential yet challenging to develop low-porosity dense electrodes along with diminishment of the electrolyte and other lightweight inactive components. Herein, a compact TiO @VN heterostructure with high true density (5.01 g cm ) is proposed crafted by ingenious selective nitridation, serving as carbon-free dual-capable hosts for both sulfur and lithium. As a heavy S host, the interface-engineered heterostructure integrates adsorptive TiO with high conductive VN and concurrently yields a built-in electric field for charge-redistribution at the TiO /VN interfaces with enlarged active locations for trapping-migration-conversion of polysulfides. Thus-fabricated TiO @VN-S composite harnessing high tap-density favors constructing dense cathodes (≈1.7 g cm ) with low porosity (<30 vol%), exhibiting dual-boosted cathode-level peak volumetric-/gravimetric-energy-densities nearly 1700 Wh L /1000 Wh kg at sulfur loading of 4.2 mg cm and prominent areal capacity (6.7 mAh cm ) at 7.6 mg cm with reduced electrolyte (<10 µL mg ). Particular lithiophilicity of the TiO @VN is demonstrated as Li host to uniformly tune Li nucleation with restrained dendrite growth, consequently bestowing the assembled full-cell with high electrode-level volumetric/gravimetric-energy-density beyond 950 Wh L /560 Wh kg at 3.6 mg cm sulfur loading alongside limited lithium excess (≈50%).

Citing Articles

Electron-injection-engineering induced dual-phase MoOF/MoOF heterostructure for magnesium storage.

Wang W, Xiong F, Zhu S, Yan M, Liao X, Yu K Natl Sci Rev. 2024; 11(8):nwae238.

PMID: 39131923 PMC: 11312365. DOI: 10.1093/nsr/nwae238.


Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies.

Shi J, Jiang K, Fan Y, Zhao L, Cheng Z, Yu P Molecules. 2024; 29(15).

PMID: 39125029 PMC: 11314291. DOI: 10.3390/molecules29153624.


Delocalized electronic engineering of TiNbO enables low temperature capability for high-areal-capacity lithium-ion batteries.

Zhang Y, Wang Y, Zhao W, Zuo P, Tong Y, Yin G Nat Commun. 2024; 15(1):6299.

PMID: 39060232 PMC: 11282191. DOI: 10.1038/s41467-024-50455-1.


Selective Nitridation Crafted a High-Density, Carbon-Free Heterostructure Host with Built-In Electric Field for Enhanced Energy Density Li-S Batteries.

Wang H, Wei Y, Wang G, Pu Y, Yuan L, Liu C Adv Sci (Weinh). 2022; 9(23):e2201823.

PMID: 35712758 PMC: 9376747. DOI: 10.1002/advs.202201823.

References
1.
Qian J, Xing Y, Yang Y, Li Y, Yu K, Li W . Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium-Sulfur Batteries. Adv Mater. 2021; 33(25):e2100810. DOI: 10.1002/adma.202100810. View

2.
Lu D, Li Q, Liu J, Zheng J, Wang Y, Ferrara S . Enabling High-Energy-Density Cathode for Lithium-Sulfur Batteries. ACS Appl Mater Interfaces. 2018; 10(27):23094-23102. DOI: 10.1021/acsami.8b05166. View

3.
Fei B, Zhang C, Cai D, Zheng J, Chen Q, Xie Y . Hierarchical Nanoreactor with Multiple Adsorption and Catalytic Sites for Robust Lithium-Sulfur Batteries. ACS Nano. 2021; 15(4):6849-6860. DOI: 10.1021/acsnano.0c10603. View

4.
Ma L, Yuan H, Zhang W, Zhu G, Wang Y, Hu Y . Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. Nano Lett. 2017; 17(12):7839-7846. DOI: 10.1021/acs.nanolett.7b04084. View

5.
Gupta A, Manthiram A . Designing Advanced Lithium-based Batteries for Low-temperature Conditions. Adv Energy Mater. 2021; 10(38). PMC: 8216142. DOI: 10.1002/aenm.202001972. View