» Articles » PMID: 35701400

SpG and SpRY Variants Expand the CRISPR Toolbox for Genome Editing in Zebrafish

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jun 14
PMID 35701400
Authors
Affiliations
Soon will be listed here.
Abstract

Precise genetic modifications in model organisms are essential for biomedical research. The recent development of PAM-less base editors makes it possible to assess the functional impact and pathogenicity of nucleotide mutations in animals. Here we first optimize SpG and SpRY systems in zebrafish by purifying protein combined with synthetically modified gRNA. SpG shows high editing efficiency at NGN PAM sites, whereas SpRY efficiently edit PAM-less sites in the zebrafish genome. Then, we generate the SpRY-mediated cytosine base editor SpRY-CBE4max and SpRY-mediated adenine base editor zSpRY-ABE8e. Both target relaxed PAM with up to 96% editing efficiency and high product purity. With these tools, some previously inaccessible disease-relevant genetic variants are generated in zebrafish, supporting the utility of high-resolution targeting across genome-editing applications. Our study significantly improves CRISPR-Cas targeting in the genomic landscape of zebrafish, promoting the application of this model organism in revealing gene function, physiological mechanisms, and disease pathogenesis.

Citing Articles

DNA targeting by compact Cas9d and its resurrected ancestor.

Fregoso Ocampo R, Bravo J, Dangerfield T, Nocedal I, Jirde S, Alexander L Nat Commun. 2025; 16(1):457.

PMID: 39774105 PMC: 11706934. DOI: 10.1038/s41467-024-55573-4.


Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.

Azeez S, Hamad R, Hamad B, Shekha M, Bergsten P Front Genome Ed. 2024; 6:1509924.

PMID: 39726634 PMC: 11669675. DOI: 10.3389/fgeed.2024.1509924.


Protocol for generating a pericyte reporter zebrafish line Ki(pdgfrb-P2A-GAL4-VP16) using a CRISPR-Cas9-mediated knockin technique.

Zi H, Peng X, Du J, Li J STAR Protoc. 2024; 6(1):103490.

PMID: 39673702 PMC: 11699729. DOI: 10.1016/j.xpro.2024.103490.


Targeting the mutation in gliomas by CRISPR/Cas precision base editing.

Weber R, Vasella F, Klimko A, Silginer M, Lamfers M, Neidert M Neurooncol Adv. 2024; 6(1):vdae182.

PMID: 39605316 PMC: 11600340. DOI: 10.1093/noajnl/vdae182.


Cytosine base editors with increased PAM and deaminase motif flexibility for gene editing in zebrafish.

Zhang Y, Liu Y, Qin W, Zheng S, Xiao J, Xia X Nat Commun. 2024; 15(1):9526.

PMID: 39496611 PMC: 11535530. DOI: 10.1038/s41467-024-53735-y.


References
1.
DAllard D, Liu J . Toward RNA Repair of Diamond Blackfan Anemia Hematopoietic Stem Cells. Hum Gene Ther. 2016; 27(10):792-801. DOI: 10.1089/hum.2016.081. View

2.
Levy C, Khaled M, Fisher D . MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006; 12(9):406-14. DOI: 10.1016/j.molmed.2006.07.008. View

3.
Xu Z, Kuang Y, Ren B, Yan D, Yan F, Spetz C . SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 2021; 22(1):6. PMC: 7780387. DOI: 10.1186/s13059-020-02231-9. View

4.
Thuronyi B, Koblan L, Levy J, Yeh W, Zheng C, Newby G . Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. 2019; 37(9):1070-1079. PMC: 6728210. DOI: 10.1038/s41587-019-0193-0. View

5.
Kluesner M, Nedveck D, Lahr W, Garbe J, Abrahante J, Webber B . EditR: A Method to Quantify Base Editing from Sanger Sequencing. CRISPR J. 2019; 1:239-250. PMC: 6694769. DOI: 10.1089/crispr.2018.0014. View