» Articles » PMID: 35695324

Utilizing Longitudinal Data in Assessing All-cause Mortality in Patients Hospitalized with Heart Failure

Overview
Journal ESC Heart Fail
Date 2022 Jun 13
PMID 35695324
Authors
Affiliations
Soon will be listed here.
Abstract

Aims: Risk stratification in patients with a new onset or worsened heart failure (HF) is essential for clinical decision making. We have utilized a novel approach to enrich patient level prognostication using longitudinally gathered data to develop ML-based algorithms predicting all-cause 30, 90, 180, 360, and 720 day mortality.

Methods And Results: In a cohort of 2449 HF patients hospitalized between 1 January 2011 and 31 December 2017, we utilized 422 parameters derived from 151 451 patient exams. They included clinical phenotyping, ECG, laboratory, echocardiography, catheterization data or percutaneous and surgical interventions reflecting the standard of care as captured in individual electronic records. The development of predictive models consisted of 101 iterations of repeated random subsampling splits into balanced training and validation sets. ML models yielded area under the receiver operating characteristic curve (AUC-ROC) performance ranging from 0.83 to 0.89 on the outcome-balanced validation set in predicting all-cause mortality at aforementioned time-limits. The 1 year mortality prediction model recorded an AUC of 0.85. We observed stable model performance across all HF phenotypes: HFpEF 0.83 AUC, HFmrEF 0.85 AUC, and HFrEF 0.86 AUC, respectively. Model performance improved when utilizing data from more hospital contacts compared with only data collected at baseline.

Conclusions: Our findings present a novel, patient-level, comprehensive ML-based algorithm for predicting all-cause mortality in new or worsened heart failure. Its robust performance across phenotypes throughout the longitudinal patient follow-up suggests its potential in point-of-care clinical risk stratification.

Citing Articles

Leveraging patients' longitudinal data to improve the Hospital One-year Mortality Risk.

Laribi H, Raymond N, Taseen R, Poenaru D, Vallieres M Health Inf Sci Syst. 2025; 13(1):23.

PMID: 40051409 PMC: 11880507. DOI: 10.1007/s13755-024-00332-4.


Utilizing longitudinal data in assessing all-cause mortality in patients hospitalized with heart failure.

Herman R, Vanderheyden M, Vavrik B, Beles M, Palus T, Nelis O ESC Heart Fail. 2022; 9(5):3575-3584.

PMID: 35695324 PMC: 9715844. DOI: 10.1002/ehf2.14011.

References
1.
Horwich T, Hamilton M, MacLellan W, Fonarow G . Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail. 2002; 8(4):216-24. DOI: 10.1054/jcaf.2002.0804216. View

2.
Pocock S, Ariti C, McMurray J, Maggioni A, Kober L, Squire I . Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J. 2012; 34(19):1404-13. DOI: 10.1093/eurheartj/ehs337. View

3.
Rahimi K, Bennett D, Conrad N, Williams T, Basu J, Dwight J . Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail. 2014; 2(5):440-6. DOI: 10.1016/j.jchf.2014.04.008. View

4.
Herman R, Vanderheyden M, Vavrik B, Beles M, Palus T, Nelis O . Utilizing longitudinal data in assessing all-cause mortality in patients hospitalized with heart failure. ESC Heart Fail. 2022; 9(5):3575-3584. PMC: 9715844. DOI: 10.1002/ehf2.14011. View

5.
Chen Y, Voors A, Jaarsma T, Lang C, Sama I, Akkerhuis K . A heart failure phenotype stratified model for predicting 1-year mortality in patients admitted with acute heart failure: results from an individual participant data meta-analysis of four prospective European cohorts. BMC Med. 2021; 19(1):21. PMC: 7839199. DOI: 10.1186/s12916-020-01894-2. View