» Articles » PMID: 35665767

Phosphoproteomic of the Acetylcholine Pathway Enables Discovery of the PKC-β-PIX-Rac1-PAK Cascade As a Stimulatory Signal for Aversive Learning

Abstract

Acetylcholine is a neuromodulator critical for learning and memory. The cholinesterase inhibitor donepezil increases brain acetylcholine levels and improves Alzheimer's disease (AD)-associated learning disabilities. Acetylcholine activates striatal/nucleus accumbens dopamine receptor D2-expressing medium spiny neurons (D2R-MSNs), which regulate aversive learning through muscarinic receptor M1 (M1R). However, how acetylcholine stimulates learning beyond M1Rs remains unresolved. Here, we found that acetylcholine stimulated protein kinase C (PKC) in mouse striatal/nucleus accumbens. Our original kinase-oriented phosphoproteomic analysis revealed 116 PKC substrate candidates, including Rac1 activator β-PIX. Acetylcholine induced β-PIX phosphorylation and activation, thereby stimulating Rac1 effector p21-activated kinase (PAK). Aversive stimulus activated the M1R-PKC-PAK pathway in mouse D2R-MSNs. D2R-MSN-specific expression of PAK mutants by the Cre-Flex system regulated dendritic spine structural plasticity and aversive learning. Donepezil induced PAK activation in both accumbal D2R-MSNs and in the CA1 region of the hippocampus and enhanced D2R-MSN-mediated aversive learning. These findings demonstrate that acetylcholine stimulates M1R-PKC-β-PIX-Rac1-PAK signaling in D2R-MSNs for aversive learning and imply the cascade's therapeutic potential for AD as aversive learning is used to preliminarily screen AD drugs.

Citing Articles

Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder.

Jia Q, Tan H, Li T, Duan X Purinergic Signal. 2024; .

PMID: 39480600 DOI: 10.1007/s11302-024-10059-2.


GSK3β Substrate-competitive Inhibitors Regulate the gut Homeostasis and Barrier Function to Inhibit Neuroinflammation in Scopolamine-induced Alzheimer's Disease Model Mice.

Zhang L, Jiang Z, Hu S, Ni H, Zhao Y, Tan X Inflammation. 2024; .

PMID: 39180577 DOI: 10.1007/s10753-024-02133-z.


Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons.

Ye Q, Nunez J, Zhang X J Neurochem. 2024; 168(6):995-1018.

PMID: 38664195 PMC: 11136594. DOI: 10.1111/jnc.16115.


KANPHOS: Kinase-associated neural phospho-signaling database for data-driven research.

Kannon T, Murashige S, Nishioka T, Amano M, Funahashi Y, Tsuboi D Front Mol Neurosci. 2024; 17:1379089.

PMID: 38628370 PMC: 11018961. DOI: 10.3389/fnmol.2024.1379089.


Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling.

Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K Front Mol Neurosci. 2024; 17:1376762.

PMID: 38516040 PMC: 10954900. DOI: 10.3389/fnmol.2024.1376762.


References
1.
Barker L, Glick S, Green J, Khandelwal J . Acetylcholine metabolism in the rat hippocampus and striatum following one-trial passive training. Neuropharmacology. 1982; 21(2):183-5. DOI: 10.1016/0028-3908(82)90160-5. View

2.
Yan Z, Flores-Hernandez J, Surmeier D . Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience. 2001; 103(4):1017-24. DOI: 10.1016/s0306-4522(01)00039-2. View

3.
Cox J, Mann M . MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26(12):1367-72. DOI: 10.1038/nbt.1511. View

4.
Newey S, Velamoor V, Govek E, Van Aelst L . Rho GTPases, dendritic structure, and mental retardation. J Neurobiol. 2005; 64(1):58-74. DOI: 10.1002/neu.20153. View

5.
Funahashi Y, Ariza A, Emi R, Xu Y, Shan W, Suzuki K . Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Rep. 2019; 29(10):3235-3252.e9. DOI: 10.1016/j.celrep.2019.10.116. View