» Articles » PMID: 35656147

NAD and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities

Overview
Date 2022 Jun 3
PMID 35656147
Authors
Affiliations
Soon will be listed here.
Abstract

Nicotinamide adenine dinucleotide (NAD) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD metabolism. Conversely, the therapeutic increase of NAD levels through the administration of NAD precursors or inhibitors of NAD-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD-regulated mechanisms critical for vascular health and summarizes new advances in NAD research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.

Citing Articles

Erythrocyte nicotinamide adenine dinucleotide concentration is enhanced by systematic sports participation.

Pospieszna B, Kusy K, Slominska E, Zielinski J, Ciekot-Soltysiak M BMC Sports Sci Med Rehabil. 2024; 16(1):216.

PMID: 39407226 PMC: 11476931. DOI: 10.1186/s13102-024-00999-y.


Improved Physical Performance Parameters in Patients Taking Nicotinamide Mononucleotide (NMN): A Systematic Review of Randomized Control Trials.

Wen J, Syed B, Kim S, Shehabat M, Ansari U, Razick D Cureus. 2024; 16(8):e65961.

PMID: 39221308 PMC: 11365583. DOI: 10.7759/cureus.65961.


An Emerging Role of Micro- and Nanoplastics in Vascular Diseases.

Lee S, Yoon H, Kim D, Jeong T, Park Y Life (Basel). 2024; 14(2).

PMID: 38398764 PMC: 10890539. DOI: 10.3390/life14020255.


Intestinal microbiota and metabolome perturbations in ischemic and idiopathic dilated cardiomyopathy.

Wang Y, Xie Y, Mahara G, Xiong Y, Xiong Y, Zheng Q J Transl Med. 2024; 22(1):89.

PMID: 38254195 PMC: 10804607. DOI: 10.1186/s12967-023-04605-6.


Hallmarks of cardiovascular ageing.

Abdellatif M, Rainer P, Sedej S, Kroemer G Nat Rev Cardiol. 2023; 20(11):754-777.

PMID: 37193857 DOI: 10.1038/s41569-023-00881-3.


References
1.
Mateuszuk L, Campagna R, Kutryb-Zajac B, Kus K, Slominska E, Smolenski R . Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol. 2020; 178:114019. DOI: 10.1016/j.bcp.2020.114019. View

2.
Escande C, Nin V, Price N, Capellini V, Gomes A, Barbosa M . Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2012; 62(4):1084-93. PMC: 3609577. DOI: 10.2337/db12-1139. View

3.
Michiels C, Fransen P, De Munck D, De Meyer G, Martinet W . Defective autophagy in vascular smooth muscle cells alters contractility and Ca²⁺ homeostasis in mice. Am J Physiol Heart Circ Physiol. 2015; 308(6):H557-67. DOI: 10.1152/ajpheart.00659.2014. View

4.
Landray M, Haynes R, Hopewell J, Parish S, Aung T, Tomson J . Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014; 371(3):203-12. DOI: 10.1056/NEJMoa1300955. View

5.
Boslett J, Reddy N, Alzarie Y, Zweier J . Inhibition of CD38 with the Thiazoloquin(az)olin(on)e 78c Protects the Heart against Postischemic Injury. J Pharmacol Exp Ther. 2019; 369(1):55-64. PMC: 6413770. DOI: 10.1124/jpet.118.254557. View