» Articles » PMID: 35652307

Comparative Transcriptomics Reveal Possible Mechanisms of Amphotericin B Resistance in Candida Auris

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Candida auris is an emerging multidrug-resistant human fungal pathogen often refractory to treatment by all classes of antifungal drugs. Amphotericin B (AmB) is a fungicidal drug that, despite its toxic side effects, remains a drug of choice for the treatment of drug-resistant fungal infections, including those caused by C. auris. However, the molecular mechanisms underlying AmB resistance are poorly understood. In this study, we present data that suggests membrane lipid alterations and chromatin modifications are critical processes that may contribute to or cause adaptive AmB resistance in clinical C. auris isolates. To determine the plausible cause of increased AmB resistance, we performed RNA-seq of AmB-resistant and sensitive C. auris isolates. Remarkably, AmB-resistant strains show a pronounced enrichment of genes involved in lipid and ergosterol biosynthesis, adhesion, drug transport as well as chromatin remodeling. The transcriptomics data confirm increased adhesion and reduced lipid membrane permeability of AmB-resistant strains compared to the sensitive isolates. The AmB-resistant strains also display hyper-resistance to cell wall perturbing agents, including Congo red, calcofluor white and caffeine. Additionally, we noticed an increased phosphorylation of Mkc1 cell integrity MAP kinase upon AmB treatment. Collectively, these data identify differences in the transcriptional landscapes of AmB-resistant versus AmB-sensitive isolates and provide a framework for the mechanistic understanding of AmB resistance in C. auris.

Citing Articles

Comparison of broth microdilution and Etest® methods for susceptibility testing of amphotericin B in Candida auris.

De Luca D, Li X, Alexander D, Dingle T, Dufresne P, Hoang L Med Mycol. 2025; 63(3).

PMID: 40037609 PMC: 11899573. DOI: 10.1093/mmy/myaf019.


Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance.

Su Y, Li Y, Yi Q, Xu Y, Sun T, Li Y J Fungi (Basel). 2025; 11(2).

PMID: 39997437 PMC: 11856953. DOI: 10.3390/jof11020143.


The multidrug-resistant complex and phylogenetic related species: Insights into antifungal resistance mechanisms.

Ramos L, Barbosa P, Lorentino C, Lima J, Braga A, Lima R Curr Res Microb Sci. 2025; 8:100354.

PMID: 39995443 PMC: 11847750. DOI: 10.1016/j.crmicr.2025.100354.


Isolate Specific Transcriptome Changes Exerted by Isavuconazole Treatment in Candida auris.

Balla N, Kovacs F, Toth Z, Harmath A, Bozo A, Majoros L Mycopathologia. 2024; 190(1):5.

PMID: 39729249 DOI: 10.1007/s11046-024-00919-1.


Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris.

Carolus H, Sofras D, Boccarella G, Sephton-Clark P, Biriukov V, Cauldron N Nat Microbiol. 2024; 9(12):3304-3320.

PMID: 39567662 DOI: 10.1038/s41564-024-01854-z.


References
1.
Tscherner M, Zwolanek F, Jenull S, Sedlazeck F, Petryshyn A, Frohner I . The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathog. 2015; 11(10):e1005218. PMC: 4608838. DOI: 10.1371/journal.ppat.1005218. View

2.
Lockhart S, Etienne K, Vallabhaneni S, Farooqi J, Chowdhary A, Govender N . Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis. 2016; 64(2):134-140. PMC: 5215215. DOI: 10.1093/cid/ciw691. View

3.
Moazeni M, Khorramizadeh M, Teimoori-Toolabi L, Noorbakhsh F, Fallahi A, Rezaie S . Down-regulation of the ALS3 gene as a consequent effect of RNA-mediated silencing of the EFG1 gene in Candida albicans. Iran Biomed J. 2012; 16(4):172-8. PMC: 3600964. DOI: 10.6091/ibj.1093.2012. View

4.
Brown J, Delaney C, Short B, Butcher M, Mckloud E, Williams C . Candida auris Phenotypic Heterogeneity Determines Pathogenicity . mSphere. 2020; 5(3). PMC: 7316489. DOI: 10.1128/mSphere.00371-20. View

5.
Gregori C, Glaser W, Frohner I, Reinoso-Martin C, Rupp S, Schuller C . Efg1 Controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryot Cell. 2011; 10(12):1694-704. PMC: 3232723. DOI: 10.1128/EC.05187-11. View