» Articles » PMID: 35650191

A Calcium-based Plasticity Model for Predicting Long-term Potentiation and Depression in the Neocortex

Abstract

Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.

Citing Articles

Postsynaptic spiking determines anti-Hebbian LTD in visual cortex basket cells.

Chou C, Droogers W, Lalanne T, Fineberg E, Klimenko T, Owens H Front Synaptic Neurosci. 2025; 17:1548563.

PMID: 40040787 PMC: 11872923. DOI: 10.3389/fnsyn.2025.1548563.


Exploring cerebellar transcranial magnetic stimulation in post-stroke limb dysfunction rehabilitation: a narrative review.

Wang Z, Wang L, Gao F, Dai Y, Liu C, Wu J Front Neurosci. 2025; 19:1405637.

PMID: 39963260 PMC: 11830664. DOI: 10.3389/fnins.2025.1405637.


Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex.

Plaza-Alonso S, Cano-Astorga N, DeFelipe J, Alonso-Nanclares L Elife. 2025; 14.

PMID: 39882848 PMC: 11867616. DOI: 10.7554/eLife.96144.


Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD.

Majumder P, Chatterjee B, Akter K, Ahsan A, Tan S, Huang C Cell Mol Biol Lett. 2025; 30(1):6.

PMID: 39815169 PMC: 11737055. DOI: 10.1186/s11658-024-00684-5.


Cortical HFS-Induced Neo-Hebbian Local Plasticity Enhances Efferent Output Signal and Strengthens Afferent Input Connectivity.

Li X, Wang X, Hu X, Tang P, Chen C, He L eNeuro. 2025; 12(2).

PMID: 39809536 PMC: 11810566. DOI: 10.1523/ENEURO.0045-24.2024.


References
1.
Tasic B, Yao Z, Graybuck L, Smith K, Nguyen T, Bertagnolli D . Shared and distinct transcriptomic cell types across neocortical areas. Nature. 2018; 563(7729):72-78. PMC: 6456269. DOI: 10.1038/s41586-018-0654-5. View

2.
Larkum M, Zhu J, Sakmann B . A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 1999; 398(6725):338-41. DOI: 10.1038/18686. View

3.
Larkum M, Waters J, Sakmann B, Helmchen F . Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci. 2007; 27(34):8999-9008. PMC: 6672209. DOI: 10.1523/JNEUROSCI.1717-07.2007. View

4.
Ledergerber D, Larkum M . Properties of layer 6 pyramidal neuron apical dendrites. J Neurosci. 2010; 30(39):13031-44. PMC: 6633503. DOI: 10.1523/JNEUROSCI.2254-10.2010. View

5.
Markram H, Muller E, Ramaswamy S, Reimann M, Abdellah M, Sanchez C . Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015; 163(2):456-92. DOI: 10.1016/j.cell.2015.09.029. View