Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System
Overview
Affiliations
Recent developments of CO capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.
Barpaga D, King J, Kothandaraman J, Lopez J, Moskowitz B, Hubbard M ACS Omega. 2024; 9(46):46247-46262.
PMID: 39583732 PMC: 11579938. DOI: 10.1021/acsomega.4c06919.
Park H, Park K, Lee U, Yoon S ChemSusChem. 2024; 18(5):e202402038.
PMID: 39420120 PMC: 11874705. DOI: 10.1002/cssc.202402038.
Transition metal pincer catalysts for formic acid dehydrogenation: a mechanistic perspective.
Kumar N, Adhikary A Front Chem. 2024; 12:1452408.
PMID: 39257650 PMC: 11385309. DOI: 10.3389/fchem.2024.1452408.
Development of a practical formate/bicarbonate energy system.
Sang R, Stein C, Schareina T, Hu Y, Leval A, Massa J Nat Commun. 2024; 15(1):7268.
PMID: 39179597 PMC: 11343857. DOI: 10.1038/s41467-024-51658-2.
Zhu C, DAgostino C, de Visser S Inorg Chem. 2024; 63(10):4474-4481.
PMID: 38408891 PMC: 10934816. DOI: 10.1021/acs.inorgchem.3c04246.