» Articles » PMID: 35647600

Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System

Overview
Journal JACS Au
Specialty Chemistry
Date 2022 Jun 1
PMID 35647600
Authors
Affiliations
Soon will be listed here.
Abstract

Recent developments of CO capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.

Citing Articles

Single-Pass Demonstration of Integrated Capture and Catalytic Conversion of CO from Simulated Flue Gas to Methanol in a Water-Lean Carbon Capture Solvent.

Barpaga D, King J, Kothandaraman J, Lopez J, Moskowitz B, Hubbard M ACS Omega. 2024; 9(46):46247-46262.

PMID: 39583732 PMC: 11579938. DOI: 10.1021/acsomega.4c06919.


Sustainable Formate Production via Highly Active CO Hydrogenation Using Porous Organometallic Polymer with Ru-PNP Active Sites.

Park H, Park K, Lee U, Yoon S ChemSusChem. 2024; 18(5):e202402038.

PMID: 39420120 PMC: 11874705. DOI: 10.1002/cssc.202402038.


Transition metal pincer catalysts for formic acid dehydrogenation: a mechanistic perspective.

Kumar N, Adhikary A Front Chem. 2024; 12:1452408.

PMID: 39257650 PMC: 11385309. DOI: 10.3389/fchem.2024.1452408.


Development of a practical formate/bicarbonate energy system.

Sang R, Stein C, Schareina T, Hu Y, Leval A, Massa J Nat Commun. 2024; 15(1):7268.

PMID: 39179597 PMC: 11343857. DOI: 10.1038/s41467-024-51658-2.


CO Reduction by an Iron(I) Porphyrinate System: Effect of Hydrogen Bonding on the Second Coordination Sphere.

Zhu C, DAgostino C, de Visser S Inorg Chem. 2024; 63(10):4474-4481.

PMID: 38408891 PMC: 10934816. DOI: 10.1021/acs.inorgchem.3c04246.


References
1.
Jakobsen J, Ronne M, Daasbjerg K, Skrydstrup T . Are Amines the Holy Grail for Facilitating CO Reduction?. Angew Chem Int Ed Engl. 2021; 60(17):9174-9179. DOI: 10.1002/anie.202014255. View

2.
Huff C, Sanford M . Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc. 2011; 133(45):18122-5. DOI: 10.1021/ja208760j. View

3.
Rezayee N, Huff C, Sanford M . Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J Am Chem Soc. 2015; 137(3):1028-31. DOI: 10.1021/ja511329m. View

4.
Mellmann D, Sponholz P, Junge H, Beller M . Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev. 2016; 45(14):3954-88. DOI: 10.1039/c5cs00618j. View

5.
Fellay C, Dyson P, Laurenczy G . A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew Chem Int Ed Engl. 2008; 47(21):3966-8. DOI: 10.1002/anie.200800320. View