» Articles » PMID: 35624184

Identification of Metabolite Extraction Method for Targeted Exploration of Antimicrobial Resistance Associated Metabolites of Klebsiella Pneumoniae

Overview
Journal Sci Rep
Specialty Science
Date 2022 May 27
PMID 35624184
Authors
Affiliations
Soon will be listed here.
Abstract

Antimicrobial resistant Klebsiella pneumoniae (K. pneumoniae), as being a pathogen of critical clinical concern, urgently demands effective therapeutic options. However, the discovery of novel antibiotics over the last three decades has declined drastically and necessitates exploring novel strategies. Metabolomic modulation has been the promising approach for the development of effective therapeutics to deal with AMR; however, only limited efforts have been made to-date, possibly due to the unavailability of suitable metabolites extraction protocols. Therefore, in order to establish a detailed metabolome of K. pneumoniae and identify a method for targeted exploration of metabolites that are involved in the regulation of AMR associated processes, metabolites were extracted using multiple methods of metabolites extraction (freeze-thaw cycle (FTC) and sonication cycle (SC) method alone or in combination (FTC followed by SC; FTC + SC)) from K. pneumoniae cells and then identified using an orbitrap mass analyzer (ESI-LC-MS/MS). A total of 151 metabolites were identified by using FTC, 132 metabolites by using FTC+SC, 103 metabolites by using SC and 69 metabolites common among all the methods used which altogether enabled the identification of 199 unique metabolites. Of these 199, 70 metabolites were known to have an association with AMR phenotype and among these, the FTC + SC method yielded better (identified 55 metabolites), quantitatively and qualitatively compared to FTC and SC alone (identified 51 and 41 metabolites respectively). Each method of metabolite extraction showed a definite degree of biasness and specificity towards chemical classes of metabolites and jointly contributed to the development of a detailed metabolome of the pathogen. FTC method was observed to give higher metabolomic coverage as compared to SC alone and FTC + SC. However, FTC + SC resulted in the identification of a higher number of AMR associated metabolites of K. pneumoniae compared to FTC and SC alone.

Citing Articles

Metabolic response of Klebsiella oxytoca to ciprofloxacin exposure: a metabolomics approach.

Ahmed S, Shams S, Trivedi D, Lima C, McGalliard R, Parry C Metabolomics. 2024; 21(1):8.

PMID: 39676074 PMC: 11646952. DOI: 10.1007/s11306-024-02206-y.


The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies.

Etlin S, Rose J, Bielski L, Walter C, Kleinman A, Mason C Clin Microbiol Rev. 2024; 37(3):e0016322.

PMID: 39136453 PMC: 11391694. DOI: 10.1128/cmr.00163-22.


Advancements in CHO metabolomics: techniques, current state and evolving methodologies.

Singh R, Fatima E, Thakur L, Singh S, Ratan C, Kumar N Front Bioeng Biotechnol. 2024; 12:1347138.

PMID: 38600943 PMC: 11004234. DOI: 10.3389/fbioe.2024.1347138.


Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from .

Singh R, Thakur L, Kumar A, Singh S, Kumar S, Kumar M Front Microbiol. 2023; 14:1152162.

PMID: 37180233 PMC: 10174324. DOI: 10.3389/fmicb.2023.1152162.

References
1.
Oliphant C, Green G . Quinolones: a comprehensive review. Am Fam Physician. 2002; 65(3):455-64. View

2.
Jacoby G . Mechanisms of resistance to quinolones. Clin Infect Dis. 2005; 41 Suppl 2:S120-6. DOI: 10.1086/428052. View

3.
Scheffers D, Pinho M . Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev. 2005; 69(4):585-607. PMC: 1306805. DOI: 10.1128/MMBR.69.4.585-607.2005. View

4.
Kumar A, Kumar Y, Sevak J, Kumar S, Kumar N, Gopinath S . Metabolomic analysis of primary human skeletal muscle cells during myogenic progression. Sci Rep. 2020; 10(1):11824. PMC: 7366914. DOI: 10.1038/s41598-020-68796-4. View

5.
Han M, Nang S, Lin Y, Zhu Y, Yu H, Wickremasinghe H . Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant by a bacteriophage-polymyxin combination. Comput Struct Biotechnol J. 2022; 20:485-495. PMC: 8760530. DOI: 10.1016/j.csbj.2021.12.039. View