» Articles » PMID: 35619619

The Problem and Potential of TMS' Infinite Parameter Space: A Targeted Review and Road Map Forward

Overview
Specialty Psychiatry
Date 2022 May 27
PMID 35619619
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments.

Methods: We performed a targeted review of pre-clinical and clinical rTMS studies.

Results: Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy.

Conclusions: We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.

Citing Articles

Targeting VMPFC-amygdala circuit with TMS in substance use disorder: A mechanistic framework.

Soleimani G, Conelea C, Kuplicki R, Opitz A, Lim K, Paulus M Addict Biol. 2025; 30(1):e70011.

PMID: 39783881 PMC: 11714170. DOI: 10.1111/adb.70011.


The future of transcranial ultrasound as a precision brain interface.

Murphy K, Fouragnan E PLoS Biol. 2024; 22(10):e3002884.

PMID: 39471185 PMC: 11521279. DOI: 10.1371/journal.pbio.3002884.


Effect of sleep quality on repetitive transcranial magnetic stimulation outcomes in depression.

Kweon J, Fukuda A, Gobin A, Haq L, Carpenter L, Brown J Front Psychiatry. 2024; 15:1458696.

PMID: 39376965 PMC: 11456523. DOI: 10.3389/fpsyt.2024.1458696.


NMDA and GABA Receptor-Mediated Plasticity Induced by 10-Hz Repetitive Transcranial Magnetic Stimulation.

Kweon J, Vigne M, Fukuda A, Ren B, Carpenter L, Brown J Res Sq. 2024; .

PMID: 38978559 PMC: 11230474. DOI: 10.21203/rs.3.rs-4630964/v1.


Pharmacological adjuncts and transcranial magnetic stimulation-induced synaptic plasticity: a systematic review.

Sohn M, Brown J, Sharma P, Ziemann U, McGirr A J Psychiatry Neurosci. 2024; 49(1):E59-E76.

PMID: 38359933 PMC: 10890793. DOI: 10.1503/jpn.230090.


References
1.
Peters J, Reithler J, Schuhmann T, de Graaf T, Uludag K, Goebel R . On the feasibility of concurrent human TMS-EEG-fMRI measurements. J Neurophysiol. 2012; 109(4):1214-27. PMC: 3569123. DOI: 10.1152/jn.00071.2012. View

2.
Bestmann S, Ruff C, Blankenburg F, Weiskopf N, Driver J, Rothwell J . Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res. 2008; 191(4):383-402. DOI: 10.1007/s00221-008-1601-8. View

3.
Goetz S, Luber B, Lisanby S, Murphy D, Kozyrkov I, Grill W . Enhancement of Neuromodulation with Novel Pulse Shapes Generated by Controllable Pulse Parameter Transcranial Magnetic Stimulation. Brain Stimul. 2015; 9(1):39-47. PMC: 5517314. DOI: 10.1016/j.brs.2015.08.013. View

4.
Isserles M, Rosenberg O, Dannon P, Levkovitz Y, Kotler M, Deutsch F . Cognitive-emotional reactivation during deep transcranial magnetic stimulation over the prefrontal cortex of depressive patients affects antidepressant outcome. J Affect Disord. 2010; 128(3):235-42. DOI: 10.1016/j.jad.2010.06.038. View

5.
Freedberg M, Reeves J, Toader A, Hermiller M, Kim E, Haubenberger D . Optimizing Hippocampal-Cortical Network Modulation via Repetitive Transcranial Magnetic Stimulation: A Dose-Finding Study Using the Continual Reassessment Method. Neuromodulation. 2019; 23(3):366-372. PMC: 7657658. DOI: 10.1111/ner.13052. View