» Articles » PMID: 35595835

Automated Next-generation Profiling of Genomic Alterations in Human Cancers

Abstract

The lack of validated, distributed comprehensive genomic profiling assays for patients with cancer inhibits access to precision oncology treatment. To address this, we describe elio tissue complete, which has been FDA-cleared for examination of 505 cancer-related genes. Independent analyses of clinically and biologically relevant sequence changes across 170 clinical tumor samples using MSK-IMPACT, FoundationOne, and PCR-based methods reveals a positive percent agreement of >97%. We observe high concordance with whole-exome sequencing for evaluation of tumor mutational burden for 307 solid tumors (Pearson r = 0.95) and comparison of the elio tissue complete microsatellite instability detection approach with an independent PCR assay for 223 samples displays a positive percent agreement of 99%. Finally, evaluation of amplifications and translocations against DNA- and RNA-based approaches exhibits >98% negative percent agreement and positive percent agreement of 86% and 82%, respectively. These methods provide an approach for pan-solid tumor comprehensive genomic profiling with high analytical performance.

Citing Articles

Detection of RAS p.Q61R by Immunohistochemistry in Practice: A Clinicopathologic Study of 217 Thyroid Nodules with Molecular Correlates.

Alzumaili B, Fisch A, Faquin W, Nose V, Randolph G, Sadow P Endocr Pathol. 2024; 35(3):219-229.

PMID: 39096324 DOI: 10.1007/s12022-024-09821-4.


Comprehensive NGS profiling to enable detection of gene rearrangements and amplifications in non-small cell lung cancer.

Clave S, Jackson J, Salido M, Kames J, Gerding K, Verner E Front Oncol. 2023; 13:1225646.

PMID: 37927472 PMC: 10623306. DOI: 10.3389/fonc.2023.1225646.


Next-generation sequencing in dermatology.

King A, Deirawan H, Klein P, Dasgeb B, Dumur C, Mehregan D Front Med (Lausanne). 2023; 10:1218404.

PMID: 37841001 PMC: 10570430. DOI: 10.3389/fmed.2023.1218404.


ctDNA response after pembrolizumab in non-small cell lung cancer: phase 2 adaptive trial results.

Anagnostou V, Ho C, Nicholas G, Juergens R, Sacher A, Fung A Nat Med. 2023; 29(10):2559-2569.

PMID: 37814061 PMC: 10579094. DOI: 10.1038/s41591-023-02598-9.


Biomarker-directed, pembrolizumab-based combination therapy in non-small cell lung cancer: phase 2 KEYNOTE-495/KeyImPaCT trial interim results.

Gutierrez M, Lam W, Hellmann M, Gubens M, Aggarwal C, Tan D Nat Med. 2023; 29(7):1718-1727.

PMID: 37429923 DOI: 10.1038/s41591-023-02385-6.


References
1.
Frampton G, Fichtenholtz A, Otto G, Wang K, Downing S, He J . Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013; 31(11):1023-31. PMC: 5710001. DOI: 10.1038/nbt.2696. View

2.
Heeke S, Hofman P . Tumor mutational burden assessment as a predictive biomarker for immunotherapy in lung cancer patients: getting ready for prime-time or not?. Transl Lung Cancer Res. 2018; 7(6):631-638. PMC: 6249624. DOI: 10.21037/tlcr.2018.08.04. View

3.
Melendez B, Van Campenhout C, Rorive S, Remmelink M, Salmon I, DHaene N . Methods of measurement for tumor mutational burden in tumor tissue. Transl Lung Cancer Res. 2018; 7(6):661-667. PMC: 6249625. DOI: 10.21037/tlcr.2018.08.02. View

4.
Zhao P, Li L, Jiang X, Li Q . Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019; 12(1):54. PMC: 6544911. DOI: 10.1186/s13045-019-0738-1. View

5.
Buchhalter I, Rempel E, Endris V, Allgauer M, Neumann O, Volckmar A . Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 2018; 144(4):848-858. DOI: 10.1002/ijc.31878. View