» Articles » PMID: 35591636

Clinical Impact of Computational Heart Valve Models

Overview
Publisher MDPI
Date 2022 May 20
PMID 35591636
Authors
Affiliations
Soon will be listed here.
Abstract

This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.

Citing Articles

A chronological history of heart valve prostheses to offer perspectives of their limitations.

Evangelista R, Pires A, Nogueira B Front Bioeng Biotechnol. 2025; 13:1533421.

PMID: 40028289 PMC: 11868121. DOI: 10.3389/fbioe.2025.1533421.


Computational modelling of valvular heart disease: haemodynamic insights and clinical implications.

Seman M, Stephens A, Kaye D, Gregory S, Stub D Front Bioeng Biotechnol. 2024; 12:1462542.

PMID: 39600889 PMC: 11588460. DOI: 10.3389/fbioe.2024.1462542.


Analysis of Umbilical Artery Hemodynamics in Development of Intrauterine Growth Restriction Using Computational Fluid Dynamics with Doppler Ultrasound.

Song X, Wang J, Sun K, Lee C Bioengineering (Basel). 2024; 11(11).

PMID: 39593828 PMC: 11591627. DOI: 10.3390/bioengineering11111169.


Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives.

Bekbolatova M, Mayer J, Ong C, Toma M Healthcare (Basel). 2024; 12(2).

PMID: 38255014 PMC: 10815906. DOI: 10.3390/healthcare12020125.


Modeling Dynamics of the Cardiovascular System Using Fluid-Structure Interaction Methods.

Syed F, Khan S, Toma M Biology (Basel). 2023; 12(7).

PMID: 37508455 PMC: 10376821. DOI: 10.3390/biology12071026.


References
1.
Bryant M, Jones R, Langley S, Livesey S, Monro J . Degenerative mitral regurgitation: when should we operate?. Ann Thorac Surg. 1999; 66(5):1579-84. DOI: 10.1016/s0003-4975(98)00947-3. View

2.
Veerappan M, Cheekoty P, Sazzad F, Kofidis T . Mitral valve re-repair vs replacement following failed initial repair: a systematic review and meta-analysis. J Cardiothorac Surg. 2020; 15(1):304. PMC: 7542900. DOI: 10.1186/s13019-020-01344-3. View

3.
Xu F, Johnson E, Wang C, Jafari A, Yang C, Sacks M . Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. Mech Res Commun. 2021; 112. PMC: 8301225. DOI: 10.1016/j.mechrescom.2020.103604. View

4.
Tiwary B . Computational medicine: quantitative modeling of complex diseases. Brief Bioinform. 2019; 21(2):429-440. DOI: 10.1093/bib/bbz005. View

5.
He S, Weston M, Lemmon J, Jensen M, Levine R, Yoganathan A . Geometric distribution of chordae tendineae: an important anatomic feature in mitral valve function. J Heart Valve Dis. 2000; 9(4):495-501; discussion 502-3. View