6.
Gietz R, Woods R
. Genetic transformation of yeast. Biotechniques. 2001; 30(4):816-20, 822-6, 828 passim.
DOI: 10.2144/01304rv02.
View
7.
Kruger C, Berkowitz O, Stephan U, Hell R
. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem. 2002; 277(28):25062-9.
DOI: 10.1074/jbc.M201896200.
View
8.
Rahman L, McKay F, Giuliani M, Quirk A, Moffatt B, Harauz G
. Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures-surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochim Biophys Acta. 2012; 1828(3):967-80.
DOI: 10.1016/j.bbamem.2012.11.031.
View
9.
Alsheikh M, Heyen B, Randall S
. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem. 2003; 278(42):40882-9.
DOI: 10.1074/jbc.M307151200.
View
10.
Garay-Arroyo A, Colmenero-Flores J, Garciarrubio A, Covarrubias A
. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem. 2000; 275(8):5668-74.
DOI: 10.1074/jbc.275.8.5668.
View
11.
Mouillon J, Eriksson S, Harryson P
. Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol. 2008; 148(4):1925-37.
PMC: 2593683.
DOI: 10.1104/pp.108.124099.
View
12.
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F
. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot. 2015; 66(10):2923-34.
DOI: 10.1093/jxb/erv084.
View
13.
Xu J, Zhang Y, Wei W, Han L, Guan Z, Wang Z
. BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol. 2008; 38(2):91-8.
DOI: 10.1007/s12033-007-9005-8.
View
14.
Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C
. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 2012; 12:140.
PMC: 3460772.
DOI: 10.1186/1471-2229-12-140.
View
15.
Singh S, Cornilescu C, Tyler R, Cornilescu G, Tonelli M, Lee M
. Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci. 2005; 14(10):2601-9.
PMC: 2253292.
DOI: 10.1110/ps.051579205.
View
16.
Svensson J, Palva E, Welin B
. Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif. 2000; 20(2):169-78.
DOI: 10.1006/prep.2000.1297.
View
17.
Rorat T
. Plant dehydrins--tissue location, structure and function. Cell Mol Biol Lett. 2006; 11(4):536-56.
PMC: 6275985.
DOI: 10.2478/s11658-006-0044-0.
View
18.
Archambault A, Stromvik M
. PR-10, defensin and cold dehydrin genes are among those over expressed in Oxytropis (Fabaceae) species adapted to the arctic. Funct Integr Genomics. 2011; 11(3):497-505.
PMC: 3156302.
DOI: 10.1007/s10142-011-0223-6.
View
19.
Kim I, Kim H, Kim Y, Choi H, Kang S, Yoon H
. Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain. Appl Microbiol Biotechnol. 2013; 97(20):8997-9009.
DOI: 10.1007/s00253-013-4729-9.
View
20.
Bokhorst S, Bjerke J, Davey M, Taulavuori K, Taulavuori E, Laine K
. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol Plant. 2010; 140(2):128-40.
DOI: 10.1111/j.1399-3054.2010.01386.x.
View