» Articles » PMID: 35561684

Topical Therapy for Regression and Melanoma Prevention of Congenital Giant Nevi

Abstract

Giant congenital melanocytic nevi are NRAS-driven proliferations that may cover up to 80% of the body surface. Their most dangerous consequence is progression to melanoma. This risk often triggers preemptive extensive surgical excisions in childhood, producing severe lifelong challenges. We have presented preclinical models, including multiple genetically engineered mice and xenografted human lesions, which enabled testing locally applied pharmacologic agents to avoid surgery. The murine models permitted the identification of proliferative versus senescent nevus phases and treatments targeting both. These nevi recapitulated the histologic and molecular features of human giant congenital nevi, including the risk of melanoma transformation. Cutaneously delivered MEK, PI3K, and c-KIT inhibitors or proinflammatory squaric acid dibutylester (SADBE) achieved major regressions. SADBE triggered innate immunity that ablated detectable nevocytes, fully prevented melanoma, and regressed human giant nevus xenografts. These findings reveal nevus mechanistic vulnerabilities and suggest opportunities for topical interventions that may alter the therapeutic options for children with congenital giant nevi.

Citing Articles

Congenital melanocytic neoplasms: clinical, histopathological and recent molecular developments.

Salgado C, Tomas-Velazquez A, Reyes-Mugica M Virchows Arch. 2025; 486(1):165-176.

PMID: 39810001 PMC: 11782411. DOI: 10.1007/s00428-024-04011-3.


SF method for removing small skin melanocytic nevus.

Zhang J, Tan K, Tang Y, Xiao X, Yang F, Chen J Front Surg. 2024; 11:1451660.

PMID: 39183777 PMC: 11341494. DOI: 10.3389/fsurg.2024.1451660.


Nevi and Melanoma.

Zhang Y, Ostrowski S, Fisher D Hematol Oncol Clin North Am. 2024; 38(5):939-952.

PMID: 38880666 PMC: 11368644. DOI: 10.1016/j.hoc.2024.05.005.


Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options.

Silva A, Bitencourt T, Vargas J, Fraga L, Filippi-Chiela E Genet Mol Biol. 2024; 47Suppl 1(Suppl 1):e20230311.

PMID: 38805699 PMC: 11132560. DOI: 10.1590/1678-4685-GMB-2023-0311.


Updates in the Management of Congenital Melanocytic Nevi.

Mologousis M, Tsai S, Tissera K, Levin Y, Hawryluk E Children (Basel). 2024; 11(1).

PMID: 38255375 PMC: 10814732. DOI: 10.3390/children11010062.


References
1.
Charbel C, Fontaine R, Malouf G, Picard A, Kadlub N, El-Murr N . NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J Invest Dermatol. 2013; 134(4):1067-1074. DOI: 10.1038/jid.2013.429. View

2.
Hemesath T, Price E, Takemoto C, Badalian T, Fisher D . MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998; 391(6664):298-301. DOI: 10.1038/34681. View

3.
Singh M, Mansuri M, Kadam A, Palit S, Dwivedi M, Laddha N . Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine. 2021; 140:155432. DOI: 10.1016/j.cyto.2021.155432. View

4.
Price H . Congenital melanocytic nevi: update in genetics and management. Curr Opin Pediatr. 2016; 28(4):476-82. DOI: 10.1097/MOP.0000000000000384. View

5.
Ji J, Wang P, Zhou Q, Zhu L, Zhang H, Zhang Y . CCL8 enhances sensitivity of cutaneous squamous cell carcinoma to photodynamic therapy by recruiting M1 macrophages. Photodiagnosis Photodyn Ther. 2019; 26:235-243. DOI: 10.1016/j.pdpdt.2019.03.014. View