» Articles » PMID: 35551187

Benchmarking of Analysis Strategies for Data-independent Acquisition Proteomics Using a Large-scale Dataset Comprising Inter-patient Heterogeneity

Overview
Journal Nat Commun
Specialty Biology
Date 2022 May 13
PMID 35551187
Authors
Affiliations
Soon will be listed here.
Abstract

Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best.

Citing Articles

Multicenter Longitudinal Quality Assessment of MS-Based Proteomics in Plasma and Serum.

Kardell O, Gronauer T, von Toerne C, Merl-Pham J, Konig A, Barth T J Proteome Res. 2025; 24(3):1017-1029.

PMID: 39918541 PMC: 11894660. DOI: 10.1021/acs.jproteome.4c00644.


Characterizing the omics landscape based on 10,000+ datasets.

Brombacher E, Schilling O, Kreutz C Sci Rep. 2025; 15(1):3189.

PMID: 39863642 PMC: 11762699. DOI: 10.1038/s41598-025-87256-5.


Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future.

Pauper M, Hentschel A, Tiburcy M, Beltran S, Ruck T, Schara-Schmidt U Biomolecules. 2025; 15(1).

PMID: 39858524 PMC: 11763865. DOI: 10.3390/biom15010130.


Integrated View of Baseline Protein Expression in Human Tissues Using Public Data Independent Acquisition Data Sets.

Prakash A, Collins A, Vilmovsky L, Fexova S, Jones A, Vizcaino J J Proteome Res. 2025; 24(2):685-695.

PMID: 39764611 PMC: 11811993. DOI: 10.1021/acs.jproteome.4c00788.


Challenges of MS-based small extracellular vesicles proteomics.

Fochtman D, Marczak L, Pietrowska M, Wojakowska A J Extracell Vesicles. 2024; 13(12):e70020.

PMID: 39692094 PMC: 11653094. DOI: 10.1002/jev2.70020.


References
1.
Rost H, Rosenberger G, Navarro P, Gillet L, Miladinovic S, Schubert O . OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 2014; 32(3):219-23. DOI: 10.1038/nbt.2841. View

2.
Fahrner M, Kook L, Frohlich K, Biniossek M, Schilling O . A Systematic Evaluation of Semispecific Peptide Search Parameter Enables Identification of Previously Undescribed N-Terminal Peptides and Conserved Proteolytic Processing in Cancer Cell Lines. Proteomes. 2021; 9(2). PMC: 8162549. DOI: 10.3390/proteomes9020026. View

3.
Muntel J, Gandhi T, Verbeke L, Bernhardt O, Treiber T, Bruderer R . Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics. 2019; 15(5):348-360. DOI: 10.1039/c9mo00082h. View

4.
Gotti C, Roux-Dalvai F, Joly-Beauparlant C, Mangnier L, Leclercq M, Droit A . Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. J Proteome Res. 2021; 20(10):4801-4814. DOI: 10.1021/acs.jproteome.1c00490. View

5.
Kelstrup C, Bekker-Jensen D, Arrey T, Hogrebe A, Harder A, Olsen J . Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. J Proteome Res. 2017; 17(1):727-738. DOI: 10.1021/acs.jproteome.7b00602. View