» Articles » PMID: 38907068

µPhos: a Scalable and Sensitive Platform for High-dimensional Phosphoproteomics

Abstract

Mass spectrometry has revolutionized cell signaling research by vastly simplifying the analysis of many thousands of phosphorylation sites in the human proteome. Defining the cellular response to perturbations is crucial for further illuminating the functionality of the phosphoproteome. Here we describe µPhos ('microPhos'), an accessible phosphoproteomics platform that permits phosphopeptide enrichment from 96-well cell culture and small tissue amounts in <8 h total processing time. By greatly minimizing transfer steps and liquid volumes, we demonstrate increased sensitivity, >90% selectivity, and excellent quantitative reproducibility. Employing highly sensitive trapped ion mobility mass spectrometry, we quantify ~17,000 Class I phosphosites in a human cancer cell line using 20 µg starting material, and confidently localize ~6200 phosphosites from 1 µg. This depth covers key signaling pathways, rendering sample-limited applications and perturbation experiments with hundreds of samples viable. We employ µPhos to study drug- and time-dependent response signatures in a leukemia cell line, and by quantifying 30,000 Class I phosphosites in the mouse brain we reveal distinct spatial kinase activities in subregions of the hippocampal formation.

Citing Articles

An accessible workflow for high-sensitivity proteomics using parallel accumulation-serial fragmentation (PASEF).

Skowronek P, Wallmann G, Wahle M, Willems S, Mann M Nat Protoc. 2025; .

PMID: 39825144 DOI: 10.1038/s41596-024-01104-w.


Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification.

Muneer G, Chen C, Chen Y Proteomics. 2024; 25(1-2):e202400087.

PMID: 39696887 PMC: 11735659. DOI: 10.1002/pmic.202400087.


Understanding the molecular diversity of synapses.

van Oostrum M, Schuman E Nat Rev Neurosci. 2024; 26(2):65-81.

PMID: 39638892 DOI: 10.1038/s41583-024-00888-w.

References
1.
Martinez-Val A, Fort K, Koenig C, van der Hoeven L, Franciosa G, Moehring T . Hybrid-DIA: intelligent data acquisition integrates targeted and discovery proteomics to analyze phospho-signaling in single spheroids. Nat Commun. 2023; 14(1):3599. PMC: 10276052. DOI: 10.1038/s41467-023-39347-y. View

2.
Bekker-Jensen D, Bernhardt O, Hogrebe A, Martinez-Val A, Verbeke L, Gandhi T . Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun. 2020; 11(1):787. PMC: 7005859. DOI: 10.1038/s41467-020-14609-1. View

3.
Lou R, Cao Y, Li S, Lang X, Li Y, Zhang Y . Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat Commun. 2023; 14(1):94. PMC: 9822986. DOI: 10.1038/s41467-022-35740-1. View

4.
Voytik E, Bludau I, Willems S, Hansen F, Brunner A, Strauss M . AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge. Bioinformatics. 2021; 38(3):849-852. PMC: 8756201. DOI: 10.1093/bioinformatics/btab674. View

5.
Meier F, Brunner A, Frank M, Ha A, Bludau I, Voytik E . diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020; 17(12):1229-1236. DOI: 10.1038/s41592-020-00998-0. View