6.
Li C
. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc Chem Res. 2009; 42(2):335-44.
DOI: 10.1021/ar800164n.
View
7.
Al-Wabli R, Almomen A, Almutairi M, Keeton A, Piazza G, Attia M
. New Isatin-Indole Conjugates: Synthesis, Characterization, and a Plausible Mechanism of Their in vitro Antiproliferative Activity. Drug Des Devel Ther. 2020; 14:483-495.
PMC: 7006853.
DOI: 10.2147/DDDT.S227862.
View
8.
Gediya L, Njar V
. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin Drug Discov. 2013; 4(11):1099-111.
DOI: 10.1517/17460440903341705.
View
9.
Scheuermann C
. Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem Asian J. 2009; 5(3):436-51.
DOI: 10.1002/asia.200900487.
View
10.
Chen Y, Shiao M, HSU M, Tsai T, Wang S
. Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. J Agric Food Chem. 2001; 49(11):5615-9.
DOI: 10.1021/jf0107252.
View
11.
Leskinen M, Yip K, Valkonen A, Pihko P
. Palladium-catalyzed dehydrogenative β'-functionalization of β-keto esters with indoles at room temperature. J Am Chem Soc. 2012; 134(13):5750-3.
DOI: 10.1021/ja300684r.
View
12.
Khan M, Anwer T, Bakht A, Verma G, Akhtar W, Alam M
. Unveiling novel diphenyl-1H-pyrazole based acrylates tethered to 1,2,3-triazole as promising apoptosis inducing cytotoxic and anti-inflammatory agents. Bioorg Chem. 2019; 87:667-678.
DOI: 10.1016/j.bioorg.2019.03.071.
View
13.
Demurtas M, Baldisserotto A, Lampronti I, Moi D, Balboni G, Pacifico S
. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg Chem. 2019; 85:568-576.
DOI: 10.1016/j.bioorg.2019.02.007.
View
14.
Viegas-Junior C, Danuello A, da Silva Bolzani V, Barreiro E, Fraga C
. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem. 2007; 14(17):1829-52.
DOI: 10.2174/092986707781058805.
View
15.
Shiri M
. Indoles in multicomponent processes (MCPs). Chem Rev. 2012; 112(6):3508-49.
DOI: 10.1021/cr2003954.
View
16.
Rasappan R, Hager M, Gissibl A, Reiser O
. Highly enantioselective michael additions of indole to benzylidene malonate using simple bis(oxazoline) ligands: importance of metal/ligand ratio. Org Lett. 2006; 8(26):6099-102.
DOI: 10.1021/ol062697k.
View
17.
Veber D, Johnson S, Cheng H, Smith B, Ward K, Kopple K
. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45(12):2615-23.
DOI: 10.1021/jm020017n.
View
18.
Cury N, Capitao R, Almeida R, Artico L, Correa J, Simao Dos Santos E
. Synthesis and evaluation of 2-carboxy indole derivatives as potent and selective anti-leukemic agents. Eur J Med Chem. 2019; 181:111570.
DOI: 10.1016/j.ejmech.2019.111570.
View
19.
Evans D, Fandrick K, Song H, Scheidt K, Xu R
. Enantioselective Friedel-Crafts alkylations catalyzed by bis(oxazolinyl)pyridine-scandium(III) triflate complexes. J Am Chem Soc. 2007; 129(32):10029-41.
DOI: 10.1021/ja072976i.
View
20.
Lian Y, Davies H
. Rh2(S-biTISP)2-catalyzed asymmetric functionalization of indoles and pyrroles with vinylcarbenoids. Org Lett. 2012; 14(7):1934-7.
PMC: 3351204.
DOI: 10.1021/ol300632p.
View