» Articles » PMID: 35486646

Classification of Non-coding Variants with High Pathogenic Impact

Overview
Journal PLoS Genet
Specialty Genetics
Date 2022 Apr 29
PMID 35486646
Authors
Affiliations
Soon will be listed here.
Abstract

Whole genome sequencing is increasingly used to diagnose medical conditions of genetic origin. While both coding and non-coding DNA variants contribute to a wide range of diseases, most patients who receive a WGS-based diagnosis today harbour a protein-coding mutation. Functional interpretation and prioritization of non-coding variants represents a persistent challenge, and disease-causing non-coding variants remain largely unidentified. Depending on the disease, WGS fails to identify a candidate variant in 20-80% of patients, severely limiting the usefulness of sequencing for personalised medicine. Here we present FINSURF, a machine-learning approach to predict the functional impact of non-coding variants in regulatory regions. FINSURF outperforms state-of-the-art methods, owing in particular to optimized control variants selection during training. In addition to ranking candidate variants, FINSURF breaks down the score for each variant into contributions from individual annotations, facilitating the evaluation of their functional relevance. We applied FINSURF to a diverse set of 30 diseases with described causative non-coding mutations, and correctly identified the disease-causative non-coding variant within the ten top hits in 22 cases. FINSURF is implemented as an online server to as well as custom browser tracks, and provides a quick and efficient solution to prioritize candidate non-coding variants in realistic clinical settings.

Citing Articles

Identification of a new spliceogenic variant causing severe primary coenzyme Q deficiency.

Alcazar-Fabra M, Ostergaard E, Fernandez-Ayala D, Desbats M, Morbidoni V, Tomas-Gallado L Mol Genet Metab Rep. 2025; 42:101176.

PMID: 39759098 PMC: 11699292. DOI: 10.1016/j.ymgmr.2024.101176.


Integrative computational analyses implicate regulatory genomic elements contributing to spina bifida.

Wolujewicz P, Aguiar-Pulido V, Thareja G, Suhre K, Elemento O, Finnell R Genet Med Open. 2024; 2:101894.

PMID: 39669613 PMC: 11613821. DOI: 10.1016/j.gimo.2024.101894.


Advancements in genetic research by the Hispanic Community Health Study/Study of Latinos: A 10-year retrospective review.

Rao H, Weiss M, Moon J, Perreira K, Daviglus M, Kaplan R HGG Adv. 2024; 6(1):100376.

PMID: 39473183 PMC: 11754138. DOI: 10.1016/j.xhgg.2024.100376.


3-hour genome sequencing and targeted analysis to rapidly assess genetic risk.

Zalusky M, Gustafson J, Bohaczuk S, Mallory B, Reed P, Wenger T Genet Med Open. 2024; 2.

PMID: 39421454 PMC: 11484281. DOI: 10.1016/j.gimo.2024.101833.


A Rare Noncoding Enhancer Variant in Contributes to the High Prevalence of Brugada Syndrome in Thailand.

Walsh R, Mauleekoonphairoj J, Mengarelli I, Bosada F, Verkerk A, van Duijvenboden K Circulation. 2024; 151(1):31-44.

PMID: 39391988 PMC: 11670919. DOI: 10.1161/CIRCULATIONAHA.124.069041.


References
1.
Osterwalder M, Barozzi I, Tissieres V, Fukuda-Yuzawa Y, Mannion B, Afzal S . Enhancer redundancy provides phenotypic robustness in mammalian development. Nature. 2018; 554(7691):239-243. PMC: 5808607. DOI: 10.1038/nature25461. View

2.
Clement Y, Torbey P, Gilardi-Hebenstreit P, Crollius H . Enhancer-gene maps in the human and zebrafish genomes using evolutionary linkage conservation. Nucleic Acids Res. 2020; 48(5):2357-2371. PMC: 7049698. DOI: 10.1093/nar/gkz1199. View

3.
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M . An atlas of active enhancers across human cell types and tissues. Nature. 2014; 507(7493):455-461. PMC: 5215096. DOI: 10.1038/nature12787. View

4.
Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K . Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034-50. PMC: 1182216. DOI: 10.1101/gr.3715005. View

5.
Caron B, Luo Y, Rausell A . NCBoost classifies pathogenic non-coding variants in Mendelian diseases through supervised learning on purifying selection signals in humans. Genome Biol. 2019; 20(1):32. PMC: 6371618. DOI: 10.1186/s13059-019-1634-2. View