» Articles » PMID: 35482840

Harnessing Big Data to Advance Treatment and Understanding of Pulmonary Hypertension

Overview
Journal Circ Res
Date 2022 Apr 28
PMID 35482840
Authors
Affiliations
Soon will be listed here.
Abstract

Pulmonary hypertension is a complex disease with multiple causes, corresponding to phenotypic heterogeneity and variable therapeutic responses. Advancing understanding of pulmonary hypertension pathogenesis is likely to hinge on integrated methods that leverage data from health records, imaging, novel molecular -omics profiling, and other modalities. In this review, we summarize key data sets generated thus far in the field and describe analytical methods that hold promise for deciphering the molecular mechanisms that underpin pulmonary vascular remodeling, including machine learning, network medicine, and functional genetics. We also detail how genetic and subphenotyping approaches enable earlier diagnosis, refined prognostication, and optimized treatment prediction. We propose strategies that identify functionally important molecular pathways, bolstered by findings across multi-omics platforms, which are well-positioned to individualize drug therapy selection and advance precision medicine in this highly morbid disease.

Citing Articles

Precision Medicine for Pulmonary Vascular Disease: The Future Is Now (2023 Grover Conference Series).

Forbes L, Bauer N, Bhadra A, Bogaard H, Choudhary G, Goss K Pulm Circ. 2025; 15(1):e70027.

PMID: 39749110 PMC: 11693987. DOI: 10.1002/pul2.70027.


Disease Network-Based Approaches to Study Comorbidity in Heart Failure: Current State and Future Perspectives.

Gomez-Ochoa S, Lanzer J, Levinson R Curr Heart Fail Rep. 2024; 22(1):6.

PMID: 39725810 PMC: 11671564. DOI: 10.1007/s11897-024-00693-7.


Exploring IRGs as a Biomarker of Pulmonary Hypertension Using Multiple Machine Learning Algorithms.

Yang J, Chen S, Chen K, Wu J, Yuan H Diagnostics (Basel). 2024; 14(21).

PMID: 39518365 PMC: 11545203. DOI: 10.3390/diagnostics14212398.


Right Ventricular Pressure Waveform Analysis-Clinical Relevance and Future Directions.

Heerdt P, Kheyfets V, Oakland H, Joseph P, Singh I J Cardiothorac Vasc Anesth. 2024; 38(10):2433-2445.

PMID: 39025682 PMC: 11580041. DOI: 10.1053/j.jvca.2024.06.022.


A perfectly imperfect engine: Utilizing the digital twin paradigm in pulmonary hypertension.

Walker M, Moore H, Ataya A, Pham A, Corris P, Laubenbacher R Pulm Circ. 2024; 14(2):e12392.

PMID: 38933181 PMC: 11199193. DOI: 10.1002/pul2.12392.


References
1.
Williams M, Das C, Handler C, Akram M, Davar J, Denton C . Systemic sclerosis associated pulmonary hypertension: improved survival in the current era. Heart. 2005; 92(7):926-32. PMC: 1860719. DOI: 10.1136/hrt.2005.069484. View

2.
Seymour C, Kennedy J, Wang S, Chang C, Elliott C, Xu Z . Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019; 321(20):2003-2017. PMC: 6537818. DOI: 10.1001/jama.2019.5791. View

3.
Lewis G, Ngo D, Hemnes A, Farrell L, Domos C, Pappagianopoulos P . Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension. J Am Coll Cardiol. 2016; 67(2):174-189. PMC: 4962613. DOI: 10.1016/j.jacc.2015.10.072. View

4.
Rehman J, Archer S . A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension. Adv Exp Med Biol. 2010; 661:171-85. DOI: 10.1007/978-1-60761-500-2_11. View

5.
Attard M, Dawes T, de Marvao A, Biffi C, Shi W, Wharton J . Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2018; 20(6):668-676. PMC: 6529902. DOI: 10.1093/ehjci/jey175. View