» Articles » PMID: 35466570

Regulating Dendrite-Free Zinc Deposition by Red Phosphorous-Derived Artificial Protective Layer for Zinc Metal Batteries

Overview
Journal Adv Sci (Weinh)
Date 2022 Apr 25
PMID 35466570
Authors
Affiliations
Soon will be listed here.
Abstract

Rational architecture design of the artificial protective layer on the zinc (Zn) anode surface is a promising strategy to achieve uniform Zn deposition and inhibit the uncontrolled growth of Zn dendrites. Herein, a red phosphorous-derived artificial protective layer combined with a conductive N-doped carbon framework is designed to achieve dendrite-free Zn deposition. The Zn-phosphorus (ZnP) solid solution alloy artificial protective layer is formed during Zn plating. Meanwhile, the dynamic evolution mechanism of the ZnP on the Zn anode is successfully revealed. The concentration gradient of the electrolyte on the electrode surface can be redistributed by this protective layer, thereby achieving a uniform Zn-ion flux. The fabricated Zn symmetrical battery delivers a dendrite-free plating/stripping for 1100 h at the current density of 2.0 mA cm . Furthermore, aqueous Zn//MnO full cell exhibits a reversible capacity of 200 mAh g after 350 cycles at 1.0 A g . This study suggests an effective solution for the suppression of Zn dendrites in Zn metal batteries, which is expected to provide a deep insight into the design of high-performance rechargeable aqueous Zn-ion batteries.

Citing Articles

All-natural charge gradient interface for sustainable seawater zinc batteries.

Fan W, Zhu C, Wang X, Wang H, Zhu Y, Chen J Nat Commun. 2025; 16(1):1273.

PMID: 39894852 PMC: 11788429. DOI: 10.1038/s41467-025-56519-0.


Massively Reconstructing Hydrogen Bonding Network and Coordination Structure Enabled by a Natural Multifunctional Co-Solvent for Practical Aqueous Zn-Ion Batteries.

Yu Y, Zhang Q, Zhang P, Jia X, Song H, Zhong S Adv Sci (Weinh). 2024; 11(22):e2400336.

PMID: 38605606 PMC: 11165558. DOI: 10.1002/advs.202400336.


Advances in Electrochemical Energy Storage over Metallic Bismuth-Based Materials.

Cheng X, Li D, Jiang Y, Huang F, Li S Materials (Basel). 2024; 17(1).

PMID: 38203875 PMC: 10780295. DOI: 10.3390/ma17010021.


Synergistically Stabilizing Zinc Anodes by Molybdenum Dioxide Coating and Tween 80 Electrolyte Additive for High-Performance Aqueous Zinc-Ion Batteries.

Thieu N, Li W, Chen X, Li Q, Wang Q, Velayutham M ACS Appl Mater Interfaces. 2023; 15(48):55570-55586.

PMID: 38058105 PMC: 10711716. DOI: 10.1021/acsami.3c08474.


A recyclable biomass electrolyte towards green zinc-ion batteries.

Lu H, Hu J, Wei X, Zhang K, Xiao X, Zhao J Nat Commun. 2023; 14(1):4435.

PMID: 37481665 PMC: 10363112. DOI: 10.1038/s41467-023-40178-0.


References
1.
Tian Y, An Y, Wei C, Xi B, Xiong S, Feng J . Flexible and Free-Standing TiCT MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. ACS Nano. 2019; 13(10):11676-11685. DOI: 10.1021/acsnano.9b05599. View

2.
Zheng J, Zhao Q, Tang T, Yin J, Quilty C, Renderos G . Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019; 366(6465):645-648. DOI: 10.1126/science.aax6873. View

3.
Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J . Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020; 49(13):4203-4219. DOI: 10.1039/c9cs00349e. View

4.
Zhang Q, Luan J, Tang Y, Ji X, Wang H . Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl. 2020; 59(32):13180-13191. DOI: 10.1002/anie.202000162. View

5.
Wang P, Xi B, Zhang Z, Huang M, Feng J, Xiong S . Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries. Angew Chem Int Ed Engl. 2021; 60(28):15563-15571. DOI: 10.1002/anie.202104053. View