» Articles » PMID: 35463435

Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases

Overview
Journal Front Plant Sci
Date 2022 Apr 25
PMID 35463435
Authors
Affiliations
Soon will be listed here.
Abstract

The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.

Citing Articles

An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins.

Ghanbarpour A, Telusma B, Powell B, Zhang J, Bolstad I, Vargas C EMBO J. 2025; .

PMID: 40082723 DOI: 10.1038/s44318-025-00408-1.


Genome-wide identification and comprehensive analysis of the FtsH gene family in wheat.

Li Y, Liu H, Wang X, Wang B Mol Biol Rep. 2025; 52(1):186.

PMID: 39899074 DOI: 10.1007/s11033-025-10243-6.


An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins.

Ghanbarpour A, Telusma B, Powell B, Zhang J, Bolstad I, Vargas C bioRxiv. 2024; .

PMID: 39149393 PMC: 11326279. DOI: 10.1101/2024.08.09.604662.


Intra-chloroplast proteases: A holistic network view of chloroplast proteolysis.

van Wijk K Plant Cell. 2024; 36(9):3116-3130.

PMID: 38884601 PMC: 11371162. DOI: 10.1093/plcell/koae178.


Genome-wide analysis of filamentous temperature-sensitive H protease (ftsH) gene family in soybean.

Wang J, Liu L, Luo R, Zhang Q, Wang X, Ling F BMC Genomics. 2024; 25(1):524.

PMID: 38802777 PMC: 11131285. DOI: 10.1186/s12864-024-10389-w.


References
1.
Artal-Sanz M, Tavernarakis N . Prohibitin and mitochondrial biology. Trends Endocrinol Metab. 2009; 20(8):394-401. DOI: 10.1016/j.tem.2009.04.004. View

2.
Wagner R, Aigner H, Funk C . FtsH proteases located in the plant chloroplast. Physiol Plant. 2011; 145(1):203-14. DOI: 10.1111/j.1399-3054.2011.01548.x. View

3.
Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W . The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 2009; 151(4):1790-801. PMC: 2785964. DOI: 10.1104/pp.109.146589. View

4.
Urantowka A, Knorpp C, Olczak T, Kolodziejczak M, Janska H . Plant mitochondria contain at least two i-AAA-like complexes. Plant Mol Biol. 2005; 59(2):239-52. DOI: 10.1007/s11103-005-8766-3. View

5.
Makino S, Makino T, Abe K, Hashimoto J, Tatsuta T, Kitagawa M . Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization. FEBS Lett. 1999; 460(3):554-8. DOI: 10.1016/s0014-5793(99)01411-8. View