6.
Kulbay M, Bernier-Parker N, Bernier J
. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis. 2021; 26(1-2):9-23.
DOI: 10.1007/s10495-020-01649-7.
View
7.
Zong W, Rabinowitz J, White E
. Mitochondria and Cancer. Mol Cell. 2016; 61(5):667-676.
PMC: 4779192.
DOI: 10.1016/j.molcel.2016.02.011.
View
8.
Inohara N, Koseki T, Chen S, Wu X, Nunez G
. CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J. 1998; 17(9):2526-33.
PMC: 1170594.
DOI: 10.1093/emboj/17.9.2526.
View
9.
Zhou P, Lugovskoy A, McCarty J, Li P, Wagner G
. Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci U S A. 2001; 98(11):6051-5.
PMC: 33420.
DOI: 10.1073/pnas.111145098.
View
10.
Wu C, Zhang Y, Sun Z, Li P
. Molecular evolution of Cide family proteins: novel domain formation in early vertebrates and the subsequent divergence. BMC Evol Biol. 2008; 8:159.
PMC: 2426694.
DOI: 10.1186/1471-2148-8-159.
View
11.
Valouskova E, Smolkova K, Santorova J, Jezek P, Modriansky M
. Redistribution of cell death-inducing DNA fragmentation factor-like effector-a (CIDEa) from mitochondria to nucleus is associated with apoptosis in HeLa cells. Gen Physiol Biophys. 2008; 27(2):92-100.
View
12.
Chen Z, Guo K, Toh S, Zhou Z, Li P
. Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis. J Biol Chem. 2000; 275(30):22619-22.
DOI: 10.1074/jbc.C000207200.
View
13.
Zaidieh T, Smith J, Ball K, An Q
. Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. BMC Cancer. 2021; 21(1):427.
PMC: 8053302.
DOI: 10.1186/s12885-021-08155-2.
View
14.
Antonsson A, Persson J
. Induction of apoptosis by staurosporine involves the inhibition of expression of the major cell cycle proteins at the G(2)/m checkpoint accompanied by alterations in Erk and Akt kinase activities. Anticancer Res. 2009; 29(8):2893-8.
View
15.
Lopez J, Tait S
. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015; 112(6):957-62.
PMC: 4366906.
DOI: 10.1038/bjc.2015.85.
View
16.
Wiehe R, Gole B, Chatre L, Walther P, Calzia E, Ricchetti M
. Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget. 2018; 9(26):18309-18326.
PMC: 5915074.
DOI: 10.18632/oncotarget.24822.
View
17.
Qian W, Van Houten B
. Alterations in bioenergetics due to changes in mitochondrial DNA copy number. Methods. 2010; 51(4):452-7.
DOI: 10.1016/j.ymeth.2010.03.006.
View
18.
Liberti M, Locasale J
. The Warburg Effect: How Does it Benefit Cancer Cells?. Trends Biochem Sci. 2016; 41(3):211-218.
PMC: 4783224.
DOI: 10.1016/j.tibs.2015.12.001.
View
19.
Chang F, Lee J, Navolanic P, Steelman L, Shelton J, Blalock W
. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003; 17(3):590-603.
DOI: 10.1038/sj.leu.2402824.
View
20.
Iglesias-Guimarais V, Gil-Guinon E, Gabernet G, Garcia-Belinchon M, Sanchez-Osuna M, Casanelles E
. Apoptotic DNA degradation into oligonucleosomal fragments, but not apoptotic nuclear morphology, relies on a cytosolic pool of DFF40/CAD endonuclease. J Biol Chem. 2012; 287(10):7766-79.
PMC: 3293563.
DOI: 10.1074/jbc.M111.290718.
View