» Articles » PMID: 35457803

Fabrication of Transparent and Flexible Digital Microfluidics Devices

Overview
Publisher MDPI
Date 2022 Apr 23
PMID 35457803
Authors
Affiliations
Soon will be listed here.
Abstract

This study proposed a fabrication method for thin, film-based, transparent, and flexible digital microfluidic devices. A series of characterizations were also conducted with the fabricated digital microfluidic devices. For the device fabrication, the electrodes were patterned by laser ablation of 220 nm-thick indium tin oxide (ITO) layer on a 175 μm-thick polyethylene terephthalate (PET) substrate. The electrodes were insulated with a layer of 12 μm-thick polyethylene (PE) film as the dielectric layer, and finally, a surface treatment was conducted on PE film in order to enhance the hydrophobicity. The whole digital microfluidic device has a total thickness of less than 200 μm and is nearly transparent in the visible range. The droplet manipulation with the proposed digital microfluidic device was also achieved. In addition, a series of characterization studies were conducted as follows: the contact angles under different driving voltages, the leakage current density across the patterned electrodes, and the minimum driving voltage with different control algorithms and droplet volume were measured and discussed. The UV-VIS spectrum of the proposed digital microfluidic devices was also provided in order to verify the transparency of the fabricated device. Compared with conventional methods for the fabrication of digital microfluidic devices, which usually have opaque metal/carbon electrodes, the proposed transparent and flexible digital microfluidics could have significant advantages for the observation of the droplets on the digital microfluidic device, especially for colorimetric analysis using the digital microfluidic approach.

Citing Articles

Emerging Trends in Integrated Digital Microfluidic Platforms for Next-Generation Immunoassays.

Su K, Li J, Liu H, Zou Y Micromachines (Basel). 2024; 15(11).

PMID: 39597170 PMC: 11596068. DOI: 10.3390/mi15111358.


Efficient Separation of Methanol Single-Micron Droplets by Tailing Phenomenon Using a PDMS Microfluidic Device.

Tanaka D, Zheng S, Furuya M, Kobayashi M, Fujita H, Akitsu T Molecules. 2024; 29(9).

PMID: 38731440 PMC: 11085517. DOI: 10.3390/molecules29091949.


Active-matrix digital microfluidics design for field programmable high-throughput digitalized liquid handling.

Wang D, Jin K, Ji J, Hu C, Du M, Belgaid Y iScience. 2024; 27(5):109324.

PMID: 38706854 PMC: 11067379. DOI: 10.1016/j.isci.2024.109324.


Research progress of electrode shapes in EWOD-based digital microfluidics.

Wu X, Tang D, He Q, Liu L, Jia Z, Tan Y RSC Adv. 2023; 13(25):16815-16827.

PMID: 37283873 PMC: 10240258. DOI: 10.1039/d3ra01817b.


Editorial for the Special Issue on Droplet-Based Microfluidics: Design, Fabrication, and Applications.

Zhu P Micromachines (Basel). 2023; 14(3).

PMID: 36985100 PMC: 10053248. DOI: 10.3390/mi14030693.

References
1.
Huang S, Connolly J, Khlystov A, Fair R . Digital Microfluidics for the Detection of Selected Inorganic Ions in Aerosols. Sensors (Basel). 2020; 20(5). PMC: 7085557. DOI: 10.3390/s20051281. View

2.
Agostini M, Cecchini M . Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology. 2021; 32(31). DOI: 10.1088/1361-6528/abfaba. View

3.
Ooi C, Vadivelu R, Jin J, Sreejith K, Singha P, Nguyen N . Liquid marble-based digital microfluidics - fundamentals and applications. Lab Chip. 2021; 21(7):1199-1216. DOI: 10.1039/d0lc01290d. View

4.
Coelho B, Veigas B, Aguas H, Fortunato E, Martins R, Viana Baptista P . A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. Sensors (Basel). 2017; 17(11). PMC: 5713054. DOI: 10.3390/s17112616. View

5.
Sun Z, Lin K, Zhao Z, Wang Y, Hong X, Guo J . An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system. Sci China Chem. 2022; 65(3):630-640. PMC: 8809245. DOI: 10.1007/s11426-021-1169-1. View