» Articles » PMID: 35421371

VAP-A and Its Binding Partner CERT Drive Biogenesis of RNA-containing Extracellular Vesicles at ER Membrane Contact Sites

Abstract

RNA transfer via extracellular vesicles (EVs) influences cell phenotypes; however, lack of information regarding biogenesis of RNA-containing EVs has limited progress in the field. Here, we identify endoplasmic reticulum membrane contact sites (ER MCSs) as platforms for the generation of RNA-containing EVs. We identify a subpopulation of small EVs that is highly enriched in RNA and regulated by the ER MCS linker protein VAP-A. Functionally, VAP-A-regulated EVs are critical for miR-100 transfer between cells and in vivo tumor formation. Lipid analysis of VAP-A-knockdown EVs revealed reductions in the EV biogenesis lipid ceramide. Knockdown of the VAP-A-binding ceramide transfer protein CERT led to similar defects in EV RNA content. Imaging experiments revealed that VAP-A promotes luminal filling of multivesicular bodies (MVBs), CERT localizes to MVBs, and the ceramide-generating enzyme neutral sphingomyelinase 2 colocalizes with VAP-A-positive ER. We propose that ceramide transfer via VAP-A-CERT linkages drives the biogenesis of a select RNA-containing EV population.

Citing Articles

Extracellular vesicles lay the ground for neuronal plasticity by restoring mitochondrial function, cell metabolism and immune balance.

Hermann D, Wang C, Mohamud Yusuf A, Herz J, Doeppner T, Giebel B J Cereb Blood Flow Metab. 2025; :271678X251325039.

PMID: 40072028 PMC: 11904928. DOI: 10.1177/0271678X251325039.


Single Extracellular VEsicle Nanoscopy-Universal Protocol (SEVEN-UP): Accessible Imaging Platform for Quantitative Characterization of Single Extracellular Vesicles.

Saftics A, Purnell B, Beres B, Thompson S, Jiang N, Ghaeli I Anal Chem. 2025; 97(3):1654-1664.

PMID: 39804668 PMC: 11780574. DOI: 10.1021/acs.analchem.4c04614.


Rickettsia parkeri forms extensive, stable contacts with the rough endoplasmic reticulum.

Acevedo-Sanchez Y, Woida P, Anderson C, Kraemer S, Lamason R J Cell Biol. 2025; 224(3).

PMID: 39775737 PMC: 11706211. DOI: 10.1083/jcb.202406122.


Transfer of and increases 3D growth and invasiveness in recipient cancer cells.

Nelson H, Qu S, Huang L, Shameer M, Corn K, Chapman S Extracell Vesicles Circ Nucl Acids. 2024; 5(3):397-416.

PMID: 39697634 PMC: 11648436. DOI: 10.20517/evcna.2024.43.


GPBP or CERT: The Roles in Autoimmunity, Cancer or Neurodegenerative Disease-A Systematic Review.

Vivo P, Hernandez-Andreu J, Prieto-Ruiz J, Ventura Gonzalez I Int J Mol Sci. 2024; 25(23).

PMID: 39684889 PMC: 11642137. DOI: 10.3390/ijms252313179.


References
1.
Lucero R, Zappulli V, Sammarco A, Murillo O, Cheah P, Srinivasan S . Glioma-Derived miRNA-Containing Extracellular Vesicles Induce Angiogenesis by Reprogramming Brain Endothelial Cells. Cell Rep. 2020; 30(7):2065-2074.e4. PMC: 7148092. DOI: 10.1016/j.celrep.2020.01.073. View

2.
Quaresma A, Bressan G, Gava L, Lanza D, Ramos C, Kobarg J . Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments. Exp Cell Res. 2009; 315(6):968-80. DOI: 10.1016/j.yexcr.2009.01.012. View

3.
Mantel P, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D . Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun. 2016; 7:12727. PMC: 5062468. DOI: 10.1038/ncomms12727. View

4.
Maas S, Breakefield X, Weaver A . Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2016; 27(3):172-188. PMC: 5318253. DOI: 10.1016/j.tcb.2016.11.003. View

5.
Friedman J, Dibenedetto J, West M, Rowland A, Voeltz G . Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell. 2013; 24(7):1030-40. PMC: 3608491. DOI: 10.1091/mbc.E12-10-0733. View