» Articles » PMID: 35397924

Gas Regulation of Complex II Reversal Via Electron Shunting to Fumarate in the Mammalian ETC

Overview
Specialty Biochemistry
Date 2022 Apr 10
PMID 35397924
Authors
Affiliations
Soon will be listed here.
Abstract

The electron transport chain (ETC) is a major currency converter that exchanges the chemical energy of fuel oxidation to proton motive force and, subsequently, ATP generation, using O as a terminal electron acceptor. Discussed herein, two new studies reveal that the mammalian ETC is forked. Hypoxia or HS exposure promotes the use of fumarate as an alternate terminal electron acceptor. The fumarate/succinate and CoQH/CoQ redox couples are nearly iso-potential, revealing that complex II is poised for facile reverse electron transfer, which is sensitive to CoQH and fumarate concentrations. The gas regulators, HS and NO, modulate O affinity and/or inhibit the electron transfer rate at complex IV. Their induction under hypoxia suggests a mechanism for how traffic at the ETC fork can be regulated.

Citing Articles

Targeting Mitochondria for Cancer Treatment.

Zorova L, Abramicheva P, Andrianova N, Babenko V, Zorov S, Pevzner I Pharmaceutics. 2024; 16(4).

PMID: 38675106 PMC: 11054825. DOI: 10.3390/pharmaceutics16040444.


Sulfide oxidation promotes hypoxic angiogenesis and neovascularization.

Kumar R, Vitvitsky V, Sethaudom A, Singhal R, Solanki S, Alibeckoff S Nat Chem Biol. 2024; 20(10):1294-1304.

PMID: 38509349 PMC: 11584973. DOI: 10.1038/s41589-024-01583-8.


HS preconditioning induces long-lived perturbations in O metabolism.

Hanna D, Diessl J, Guha A, Kumar R, Andren A, Lyssiotis C Proc Natl Acad Sci U S A. 2024; 121(12):e2319473121.

PMID: 38478695 PMC: 10962982. DOI: 10.1073/pnas.2319473121.


Incorporating chemical structures into scientific figures.

Banerjee R, David Y, Chan J Trends Biochem Sci. 2023; 48(9):743-745.

PMID: 37567151 PMC: 10953349. DOI: 10.1016/j.tibs.2023.06.003.


A Metabolic Paradigm for Hydrogen Sulfide Signaling Electron Transport Chain Plasticity.

Hanna D, Kumar R, Banerjee R Antioxid Redox Signal. 2022; 38(1-3):57-67.

PMID: 35651282 PMC: 9885546. DOI: 10.1089/ars.2022.0067.

References
1.
Weeks C, Singh S, Madzelan P, Banerjee R, Spiro T . Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. J Am Chem Soc. 2009; 131(35):12809-16. PMC: 2746071. DOI: 10.1021/ja904468w. View

2.
Petersen L . The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta. 1977; 460(2):299-307. DOI: 10.1016/0005-2728(77)90216-x. View

3.
Vitvitsky V, Kumar R, Libiad M, Maebius A, Landry A, Banerjee R . The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis. J Biol Chem. 2021; 296:100736. PMC: 8165552. DOI: 10.1016/j.jbc.2021.100736. View

4.
Urban P, Klingenberg M . On the redox potentials of ubiquinone and cytochrome b in the respiratory chain. Eur J Biochem. 1969; 9(4):519-25. DOI: 10.1111/j.1432-1033.1969.tb00640.x. View

5.
Zu Y, Shannon R, Hirst J . Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Am Chem Soc. 2003; 125(20):6020-1. DOI: 10.1021/ja0343961. View