» Articles » PMID: 35393424

Reshuffling of the Ancestral Core-eudicot Genome Shaped Chromatin Topology and Epigenetic Modification in Panax

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Apr 8
PMID 35393424
Authors
Affiliations
Soon will be listed here.
Abstract

All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture, such as chromatin topology and gene expression, remains poorly understood. Here, we assemble chromosome-level genomes of one diploid and three tetraploid Panax species and conduct in-depth comparative genomic and epigenomic analyses. We show that chromosomal interactions within each duplicated ancestral chromosome largely maintain in extant Panax species, albeit experiencing ca. 100-150 million years of evolution from a shared ancestor. Biased genetic fractionation and epigenetic regulation divergence during polyploidization/(re)diploidization processes generate remarkable biochemical diversity of secondary metabolites in the Panax genus. Our study provides a paleo-polyploidization perspective of how reshuffling of the ancestral core-eudicot genome leads to a highly dynamic genome and to the metabolic diversification of extant eudicot plants.

Citing Articles

Genome sequencing of three Polyscias species reveals common features in terpene synthase gene family evolution in these species.

Bai M, Yang X, Lorence D, Wood K, Ahlstrand N, Flynn T Plant Genome. 2025; 18(1):e20563.

PMID: 39972488 PMC: 11839933. DOI: 10.1002/tpg2.20563.


Evolution, Structural and Functional Characteristics of the Gene Family and Gene Expression Through Methyl Jasmonate Regulation in C.A. Meyer.

Lephoto K, Wang D, Liu S, Li L, Wang C, Liu R Plants (Basel). 2025; 13(24.

PMID: 39771274 PMC: 11677711. DOI: 10.3390/plants13243574.


Multiomics joint analysis reveals the potential mechanism of differences in the taproot thickening between cultivated ginseng and mountain-cultivated ginseng.

Zhang M, Sun Y, Lan Y, Cheng L, Lv Z, Han M BMC Genomics. 2024; 25(1):1228.

PMID: 39707199 PMC: 11660452. DOI: 10.1186/s12864-024-11146-9.


High-resolution genetic map and SNP chip for molecular breeding in a tetraploid medicinal plant.

Cho W, Jang W, Shim H, Kim J, Oh Y, Park J Hortic Res. 2024; 11(12):uhae257.

PMID: 39664690 PMC: 11630301. DOI: 10.1093/hr/uhae257.


: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides.

Wei G, Zhang G, Li M, Zheng Y, Zheng W, Wang B Hortic Res. 2024; 11(8):uhae170.

PMID: 39135729 PMC: 11317898. DOI: 10.1093/hr/uhae170.


References
1.
Van de Peer Y, Mizrachi E, Marchal K . The evolutionary significance of polyploidy. Nat Rev Genet. 2017; 18(7):411-424. DOI: 10.1038/nrg.2017.26. View

2.
Soltis D, Albert V, Leebens-Mack J, Bell C, Paterson A, Zheng C . Polyploidy and angiosperm diversification. Am J Bot. 2011; 96(1):336-48. DOI: 10.3732/ajb.0800079. View

3.
Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z, Van de Peer Y . Revisiting ancestral polyploidy in plants. Sci Adv. 2017; 3(7):e1603195. PMC: 5498109. DOI: 10.1126/sciadv.1603195. View

4.
Schubert I, Lysak M . Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 2011; 27(6):207-16. DOI: 10.1016/j.tig.2011.03.004. View

5.
Wendel J, Jackson S, Meyers B, Wing R . Evolution of plant genome architecture. Genome Biol. 2016; 17:37. PMC: 4772531. DOI: 10.1186/s13059-016-0908-1. View